INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 8" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NOTE TO USERS

This reproduction is the best copy available

UMl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AUTOMATIC SEMANTIC HEADER GENERATOR

SAMI SAMIR HADDAD

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoNCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JuLy 1998
© Samri SAMIR HaDDaD, 1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



l*l National Library
of Canada
Acquisitions and
Bibliographic Services

395 Wellington Street
Oftawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et )
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada i
Your file Volre rélérence
Our filo Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-39485-9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CoNcoORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Sami Samir Haddad
Entitled: Automatic Semantic Header Generator

and submitted in partial fulfillment of the requirements for the degree of
Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

\J ’ w "AYE/\/VM Chair
\/ @4‘- Dr. Sabine Bergler

/j %Z%WW Dr. Peter Grogono
/ Dr. Bipin C. Desai

Approved : m"”

Chair of Department or Graduate Program Director

4,,:7 Ves o 94 W%&&O@{J

- Dr. Nabil Esmail, Dean
Faculty of Engineering and Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Automatic Semantic Header Generator

Sami Samir Haddad

As the amount of information and the number of Internet users grow, the problem of indexing and
retrieval of electronic information resources becomes more critical. The existing search systems tend
to generate misses and false hits due to the fact that they attempt to match the specified search
terms without context in the target information resource. The COncordia INdexing and DlIscovery
system is an indexing system. It is a powerful means of helping users locate documents, software,
and other types of data among large repositories. In environments that contain many different types

of data, content indexing requires type-specific processing to extract information effectively.

The Semantic Header, which is proposed by Desai [11], contains the semantic contents of informa-
tion resources. It provides a useful tool in searching for a document based on a number of commonly
used criteria. The information from the semantic header could be used by the search system to help

locate appropriate documents with minimum effort.

This thesis introduces an automatic tool for the extraction and storage of some of the meta-

information in a Semantic Header and an automatic text classification scheme.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgments

There are many people, both personal friends and professionals from academia, to whom I owe this

thesis. I would like to take this opportunity to show my appreciation to them.

First and foremost, I would like to express my gratitude to my parents, who throughout the years,
have loved and nurtured me. I not only thank you for supporting me throughout my education, but
I would also like to show my deepest gratitude to you for allowing me to live and to grow up in
a stable and healthy environment. My love is also expressed to my brothers, who throughout my

childhood and until this day, have loved and respected me.

I would like to thank my supervisor, Dr. Desai, for his guidance and for his encouragement
throughout the many phases of this thesis. It is only through your proper support that I have
overcome the many challenging phases of this thesis and made my thesis work a pleasant and
extremely educational experience. Dr Desai, [ am forever indebted to you, and I am certain that we

will meet and work again in the future.
I am grateful to Lee Harris and Carol Coughlin, who have been helpful in some of my thesis work.

I would like to express my sincere recognition to Concordia University, whose excellence in aca-
demic teaching has attracted the finest professors from academia. The few years that I have spent
at Concordia, have provided me with excellent training, and they have allowed me to become a

well-grounded individual, who is ready to enter the professional world with great confidence.

Last and by no means least, I would like to thank my friends and my girl friend, for being there
for me in time of need. Our friendship has proven to be solid over the years, and I can only hope

that it will last for a lifetime.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

List of Figures viii
List of Tables ix
1 Imtroduction 1
1.1 The Discovery Problem . . . . . . . . . . . e 1
1.2 Proposed solution . . . . . . . . . . . .. e e e 2
1.3 Organisation of the thesis . . . . .. ... ... ........ e e e e e e e e e e 2

2 The CINDI system 4
2.1 Overview of CINDI . . . . . . . . . . . e e e e e e e 5
2.1.1 TheSemanticHeader . ... ... ... ... ... .. .. . . ..., 5

2.1.2 Semantic Header’s Mark-up Schema . . ... .. ... ... .......... 8

2.1.3 The Semantic Header Database System . .. .. ... ... ... ....... 13

2.1.4 The CINDI’s Search System . . . . . . . . . . . o v i i i 14

3 Information Retrieval 15
3.1 What is Information Retrieval? . . . . . . . .. . ... oo 15
3.1.1 Information Retrieval Background . . . ... .. ... ... ... ..., ... 16

3.1.2 Developments in Automatic Text Retrieval . . . ... .. ... ... .. ... 18

3.2 Algorithms used by the IR community . . . . . ... ... .. ... ... ... .. 18
3.2.1 Luhn’sideas . . . . . . . . . e e e 19

3.2.2 CJ.van Rijsbergen’s attempt . . . . ... ... ..o 19

3.2.3 Limitations of the Traditional Approaches . . . . . . .. .. ... .. .. ... 20

3.2.4 Alternative Retrieval Models . . . . . . . ... .. ... oL 21

3.2.5 Enhancing the document representation . .. ... .. ... ... ....... 22

3.3 Natural Language Processing in IR . . . .. .. .. ... ... ... ... ....... 22
3.3.1 Progress of Natural Language ProcessinginIR . . . ... ... ... ..... 22

3.4 Automatic Sentence Extraction used in Title and Abstract selection . . .. .. ... 26
3.5 Text Classification/Categorisation . . . .. .. ... ... .. ... ... ....... 28
3.6 Retrieval and Information extraction systems . . .. .. ... ... ... ... .. 31
3.6.1 The SMART Retrieval System (Salton) . .. .. ... ............. 31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6.2 Oracle ConText-Text Management System . . . .. .. .. ... ....... 32

3.6.3 Nordic WAIS/World Wide Web Project . . .. ... .. ... ......... 33

3.6.4 Harvest’s Essence . . . . . . . . . oo it i i it i it i 35

3.7 Conclusions . . . . . . i e e e e e e e e e e e e e e 38

4 ASHG’s Thesaurus 39
41 TheThesaurusin IR . . . . . . . . . . . o 0 it ittt i it it e e 39
4.2 The Thesaurus for ASHG . . . . . . . . .. . . i i ittt 40
4.2.1 The Subject Hierarchies . . . . . . . .. .. .. .. .. 40

4.2.2 Building CINDDI’s Classification . . . .. .. .. ... ... .. .. ....... 40

4.2.3 The Control Term Subject Association . . . . . ... .. ... ... ...... 45

4.2.4 Building the Controlled Terms . . . .. .. .. ... .. ... ......... 46

4.2.5 Programs used to build the Thesaurus . . . .. ... .. ... ......... 54

5 ASHG 57
5.1 Introductionm . . . . . . . . . . . . i i e e e e e 57
5.2 Document Type Recognition . . . .. ... .. .. ... .. .. ... .. ....... 58
5.3 Applying ASHG’s Extractors . . . .. ... .. .. . ..o 61
5.3.1 HTML.extractor . . . . . . . . . . it it i it ittt e 61

5.3.2 Latex_extractor . . . . . . . . . . ... e e e e 65

5.3.3 Text.extractor . . . . . . . . . . .. . i 69

5.3.4 Unknown.extractor . . . . . . . . . . . i L i e 70

5.3.5 Generating an implicit list of keywords and words used in Document classification 71

5.4 ASHG’s Document Subject Headings Classification scheme . . . . ... .. .. ... 78
5.4.1 The Algorithm followed . . . . . .. .. .. .. ... . ... ... L. 78

5.5 Semantic Header Validation . . . . . . . . . .. .. .. ... ... ... 79

6 Analysis of ASHG’s Results 80
6.1 Reduction of Controlled Terms . . . . . . . .. .. .. .. . ... 80
6.2 Experiments . . . . . . . . . o i it e e e e e e e e e e e e 81
6.2.1 SampleResults . . . . ... .. ... .. . 86

7 Conclusion and Future Work 90
7.1 Conclusion . . . .. . . .. . . e e e e e e 90
7.2 Contribution of this Thesis . . . . . . . . . . . . . . i e 91
7.3 Future Work . ..... ... e e e e e e e e e e e e e e e 92

A Papers Used in Testing ASHG 94
B Oracle ConText’s General System Description 97
B.1 ConText’s General System Description . . . . . .. .. .. .. ... ... ....... 97
B.1.1 ConText’s main procedures . . . . ... .. .. .. ... 98

B.1.2 ConText’s Support for many languages and formats . . . ... .. ... ... 100

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography 101

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

1 CINDI’ Semantic Header Graphical interface(a) . .. .. ... ... ... ...... 10
2 CINDI’ Semantic Header Graphical interface-(b) . .. .. .. ... ... ... .. .. 11
3 CINDI’ Semantic Header Graphical interface-(c) . .. .. .. ... ... . ... ... 12
4 Transforming ACM (or INSPEC) Subject Hierarchy into CINDI’s Subject Hierarchy 42
5 Associating words’ roots to their subject headings . . . . .. ... ... ... .. .. 47
6 Keyword Class Definition . . . . . . . . . . . 0 . i i it e e 53
7 Document Type Recognition . . . .. .. ... .. .. .. ... ... ... .... 60
8 ASHG’s extraction steps . . . . . . . . . o v v i i e e 62

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

W N OOl R W N

The Harvest’s Summarisers’ functions for cach document . . . . . .. .. ... ...
Noise (Stop) words extracted by ASHG . . .. . ... ... .. .. .. ........
Weight and Frequency numbers used in extracting terms . . . . . . .. .. ... ...
The word stem results after using Porter and ASHG’s Algorithm . . . .. ... ...
Words Dropped from the list of controlled terms . . . . . ... .. .. .. ... ...
Summary of ASHG’s HTML test results against the authors and INSPEC’s results .
Summary of ASHG’s Latex test results against the authors and INSPEC’s results . .
Summary of ASHG’s Text test results against the authors and INSPEC’s results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1.1 The Discovery Problem

Rapid growth in data volume, user base and data diversity render Internet-accessible information
increasingly difficult to use effectively. At this time, a number of information sources, both public
and private, are available on the Internet. They include text, computer programs, books, electronic
journals, newspapers, organisational, local and national directories of various types, sound and voice
recordings, images, video clips, scientific data, and private information services such as price lists
and quotations, databases of products and services, and speciality newsletters [12]. There is a need
for an automated search system that allows easy search for and access to relevant resources available
on the Internet. Proper functioning of this system will require a proper indexing of the available
information. Thus, secondary information called meta-information must be extracted and used as
an index to the available primary resource. Building this index requires information extraction
methods tailored to each specific environment. The semantics of the files in which the primary
resource is stored will be exploited in order to extract and summarise the relevant information that
will support the resource discovery. To do this, the primary file type should be identified and then

the type specific selection and extraction methods are applied to the file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



It is envisioned that regional and/or specialised databases will be created to maintain archives of
the cover pages (or Semantic Headers). These databases could be searched by cooperating distributed
expert systems to help users in locating pertinent documents. Such a system is currently under
development at Concordia University and is called Concordia INdexing and DIscovery system, or

CINDI

1.2 Proposed solution

CINDI, a system under development at Concordia University, provides a mechanism to register,
search and manage the meta-information, with the help of an easy to use graphical user interface.
This meta-information, which is described in chapter 2, is the Semantic Header, that is stored in the
CINDI system. CINDI tries to avoid problems caused by differences in semantics and representation
as well as incomplete and incorrect data cataloguing. It also tries to avoid the problems caused
by the difference in index terms. This meta-information could be entered either by the primary
resource provider or by the Automatic Semantic Header Generator (ASHG). ASHG, a software that
generates sorme meta-information of the submitted document, assists the user in this process. This
thesis introduces ASHG, which aims at saving the primary resource provider’s time by automatically
generating and extracting part of the meta-information (Semantic Header) of the document and
classifying the resource under a list of subject headings. As the provider helps in this process by

verifying and correcting the Semantic Header entry, there is the potential for its accuracy is high.

1.3 Organisation of the thesis

This thesis is organised as follows. In thapter 2, we will introduce the CINDI system. Chapter 3
describes information retrieval, its history and some of the algorithms used in that field. Automatic
text retrieval, natural language processing and text classification is also discussed in chapter 3. At

the end of chapter 3, we describe some retrieval and information extraction systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 covers the Thesaurus used and how it is built. Chapter 5 describes the Automatic
Semantic Header Generator, or ASHG. This chapter covers the basic subparts used by it as the type
recognition, and the extractors. In chapter 6, we test and compare the classification of our generated
index with the ones produced by cataloguers or the docurnent’s author’s opinion. Finally in chapter

7, we draw our conclusion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

The CINDI system

The current practice in most research institutes, universities and business organisations to intercon-
nect their computing facilities using a digital network is the accepted method of sharing resources.
Such networks, in turn, are interconnected allowing information to be exchanged across networks

using appropriate data transfer protocols.

There is a need for the development of a system which allows easy search for and access to resources
available on the Internet. Solving the problem of fast, efficient and easy access to the documents
can be started by building a standard index structure and building a bibliographic system using
standardised control definitions and terms. Such definitions could be built into the knowledge-base
of an expert system based index entry and search interface. The purpose of indices and bibliographies

(secondary information) is to catalogue the primary information and allow easy access to it.

Preparing the primary source’s meta or secondary information requires finding the primary source,
identifying it as to its subject, title, author, keywords, abstract, etc. Since it is to be used by many

users, it has to be accurate, easy to use and properly classified.

Attempts to provide easy search of relevant documents has lead to 2 number of systems including

WALIS, and more recently a number of Spiders, Worms and other creepy crawlers [9, 20, 28, 39, 68,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60, 71, 72, 73).

However, the problem with many of these tools is that their selectivity of documents is often poor
[12]. The chances of getting inappropriate documents and missing relevant information because of
poor choice of search terms is large. These problems are addressed by CINDI, which provides a

mechanism to register, manage and search the bibliographic information.

2.1 Overview of CINDI

The overall CINDI system uses knowledge bases and expert sub-systems to help the user in the
registering and the search processes. CINDI standardises the terms. The index generation and
maintenance sub-system uses CINDI’s thesaurus to help the provider of the resource select correct
terms for items such as subject, sub-subject and keywords. Similarly, another expert sub-system is

used to help the user in the search for appropriate information resources [11].

2.1.1 The Semantic Header

For cataloguing and searching, CINDI uses a meta-data description called a Semantic Header to
describe an information resource. The Semantic Header includes those elements that are most often
used in the search for an information resource. Since the majority of searches begin with a title,
name of the authors (70%), subject and sub-subject (50%) [27], CINDI requires the entry for these
elements in the Semantic Header. Similarly, the abstract and annotations are relevant in deciding
whether or not a resource is useful, so they are included too.[56, 12]. A brief descripton of the

semantic header elements follows:

Title, Alt-title

The title field contains the name of the resource that is given by the creator(s). The alternate title

field is used to indicate a secondary title of the resource.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Subject

The subject and sub-subjects of the resource are indicated in the next field which is a repeating

group. This field contains a list of possible subject classifications of the resource.

Language, Character Set

The character set and the language are the ones used in resource.

Author and other responsible agents

The role of the person associated with the document, for instance, author, editor, and compiler.

This includes fields such as name, postal address, telephone number, fax number, and email address.

Keyword

This field contains a list of keywords mentioned in the resource.

Identifier

The identifiers for the document. Example of identifiers are, ISBN(International Standard Book
Number), URL (Universal Resource Locator) of the document. This is a multi-valued slot in case

the document is available in many formats or is electronically stored at more than one site.

Date

The date on which the document was created, catalogued, and the date on which the document will

expire, if any.

Version

The version number, and the version number being superseded, if any, are given in these elements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Classification

The legal, security or other type of classification of the document. For each, nature of classification

is specified.

Coverage

It indicates the targeted audience of the document or it may indicate cultural and temporal aspect

of the document’s content.

System Requirements

The document being an electronic one requires certain system requirements for it to be displayed

or used. The components are the hardware, the software or the network and for each the minimum

needs.

Genre

It is used to describe the physical or electronic format of the resource. It consists of a domain and

the corresponding value or size of the resource.

Scource and Reference

The Source indicates the documents being referenced or which were required in its preparation. It

could also be the main component for which the current document is an addendum or attachment.

Cost

In case of a resource accessible for a fee, the cost of accessing it is given.

Abstract

The abstract of the document is either provided by the author or by ASHG.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Annotations

Annotations put in by readers of the document.

User ID, Password

A Provider ID of at least six characters and a password of four to eight characters. More than one

semantic header by the same provider can have the same ID and password.

2.1.2 Semantic Header’s Mark-up Schema

The semantic header’s fields are stored using a language based on the SGML mark-up language:
<semhdr>

<title> required </title>
<alt-title> OPTIONAL </alt-title>

<Subject> required: a list each of which includes fields
for subject and up to two levels of sub-subject:
at least one entry is required </Subject>

<language> OPTIONAL: of the information resource </language>
<char-set> OPTIONAL: character set used </char-set>

<author> required: a list each of which includes role, name,
organisation, address, etc. of each person/institute
responsible for the information resource: at least the
name or the organisation and address is required </author>

<Keyword> required: a list of keywords </Keyword>

<Dates>
<Created> required: </Created>
<Expiry> OPTIONAL: </Expiry>
<Updated> system generated </Updated> </Dates>

<Version> OPTIONAL: version of the resource </Version>

<Supersedes> OPTIONAL: which version is being replaced
</Supersedes>

<Coverage> OPTIONAL: audience, spatial, temporal </Coverage>

<Classification> OPTIONAL: nature (legal, security level etc.)
of the resource </Classification>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<Identifier> A list of domains for identifiers and the
corresponding values: typical identifiers could
be one of more Unique Resource Locator(URL), Call
No. for the resource, unique name of the resource
(URN), site where the item is to be archived: at
least one required </Identifier>

<Abstract> OPTIONAL but recommended </Abstract>
<Annotation> OPTIONAL: </Annotation>

<SysReq> OPTIONAL: list of system requirements for example
hardware and software: the component and the corres—
ponding requirements are given </SysReq>

<Source> OPTIONAL: gives the source or related list of
resources for each such resource it indicates a
relationship and gives an identifier which includes
the domain and the corresponding value </Source>

<size> size of the resource in appropriate units
(e.g., bytes) </size>

<Cost> OPTIONAL: cost of accessing the resource </Cost>

<control>

<Ac> account number </Ac>

<password> required: encoded password or digital signature of
provider of resource for initial entry and subsequent update
</password>

<signature> digital signature of the resource for authentication
</signature> </control>

</semhdr>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1: CINDI’ Semantic Header Graphical interface_(a)

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2: CINDI’ Semantic Header Graphical interface_(b)

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3: CINDI’ Semantic Header Graphical interface_(c)

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Next, the Semantic Header Database system is described.

2.1.3 The Semantic Header Database System

The index entries registered by a provider of a resource is stored in a distributed database system
(SHDDB). From the point of view of the users of the system, the underlying database may be
considered to be a monolithic system. In reality, it would be distributed and replicated allowing for
reliable and failure-tolerant operations. The interface hides the distributed and replicated nature of
the database. The distribution is based on subject areas and as such the database is considered to

be horizontally partitioned [10].

It is envisaged that the database on different subjects will be maintained at different nodes of the
Internet. The locations of such nodes need only be known by the intrinsic interface. A database
catalog would be used to distribute this information. However, this catalog itself could be distributed

and replicated as is done for distributed database systems.

The Semantic Header information entered by the provider of the resource using a graphical inter-
face is relayed from the user’s workstation by a client process to the database server process at one
of the nodes of the SHDDB. The node is chosen based on its proximity to the workstation or on the
subject of the index record. On receipt of the information, the server verifies the correctness and

authenticity of the information and on finding everything in order, sends an acknowledgment to the

client.

The server node is responsible for locating the partitions of the SHDDB where the entry should
be stored and forwards the replicated information to appropriate nodes. For example, the semantic

header entry would be part of the SHDDB for subjects Computer Science and Library Studies.

Similarly the database server process is responsible for providing the catalogue information for

the search system. In this way the various sites of the database work in a cooperating mode to

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



maintain consistency of the replicated portion. The replicated nature of the database also ensures
distribution of load and ensures continued access to the bibliography when one or more sites are

temporarily nonfunctional.

2.1.4 The CINDI’s Search System

CINDI guides the user in entering the various search items in a graphical interface similar to the
one used by the index entry system. The search system also uses a graphical interface and a client
process. Once the user has entered a search request, the client process communicates with the
nearest SHDDB catalogue to determine the appropriate site of the SHDDB database. Subsequently,
the client process communicates with this database and retrieves one or more semantic headers. The
result of the query could than be collected and sent to the user’s workstation. The contents of these
headers are displayed, on demand, to the user who may decide to access one or more of the actual
resources. It may happen that the item in question may be available from a number of sources. In
such a case the best source is chosen based on optimum costs. The client process would attempt to

use appropriate hardware/software to retrieve the selected resources [12].

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Information Retrieval

3.1 What is Information Retrieval?

Information Retrieval (IR) is concerned with the representation, storage, organisation and accessing
of information. The first step in the retrieval process is for the user to state the information needed.
This has to be done in a format that enables the IR system to understand it and to act on it [19]. To
facilitate the task of finding items of interest, libraries and information centers provide information
users with a variety of auxiliary aids. Each incoming item is analysed and appropriate descriptions
are chosen to reflect the information content of the item. Retrieval effectiveness is typically measured
by two metrics, precision, which is the percentage of the retrieved documents that are relevant to
the information need, and recall, which is the percentage of relevant documents in the collection

that are retrieved. [19].

In this chapter, we will discuss the history of information retrieval, automatic document indexing
or representation, algorithms used by the IR community, natural language processing, the automatic
sentence extraction and abstract selection and the text classification. We will also be portraying
Salton’s SMART retrieval system, Oracle’s ConText, Nordic and Harvest’s Essence information

retrieval and extraction systems.

15.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Indexing is the basis for retrieving documents that are relevant to the user’s need [34]. Building
an accurate representation of a document, which would increase precision, is one of CINDI’s main
concerns. Compact descriptions of a document’s index may increase the efficiency of matching
and the effectiveness of classifying textual material as relevant or non-relevant. Document retrieval
imposes conflicting normalising and accurate demands [34]. As a result, variations in indexing that
increase precision usually decrease recall, and vice versa. The fundamental goal is to increase both.
There are numerous types of indexing languages. One which uses the same terms found in the

document and another which is limited to those from a controlled languages [34].

3.1.1 Information Retrieval Background

Tests of indexing languages have shown that indexing documents by individual terms corresponding

to words or word stems produces results that are at least as good as those produced when indexing

by controlled vocabularies [34].

Luhn([36] used frequency counts of words in the document text to determine which words were
sufficiently significant to represent the document. The use of statistical information about distri-

butions of words in documents was further exploited by Maron and Kuhn {37] and Stiles [58] who

obtained statistical associations between keywords.

Statistical Document Retrieval methods assign higher numeric weights to terms showing evidence
of being good content indicators, causing them to have greater influence on the ranking of the
documents. The number of occurrences of a term in a document as a whole may be taken into
account, when computing the influence of the term. Evidence also suggests that combining single

terms into compound terms may be useful[34).

Bayesian network

All IR systems draw conclusions about the content of a document by examining some representation

of that document. An automated system of indexing in such an approach bases its conclusions about

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the document on the evidence of computable document features, such as the presence or absence of

particular words and phrases [19].

A Bayesian network is a directed acyclic graph in which each node represents a random variable,
that is a set of mutually exclusive and collectively exhaustive propositions. Each set of arcs into a
node represents a probabilistic dependence between the node and its parents (the nodes at the other
ends of the incoming arcs). A Bayesian network represents, through its structure, the conditional
independence relations among the variables in the network. These independence relations provide
a framework within which to acquire probabilistic information. A Bayesian network represents
beliefs and knowledge about a particular class of situations. Given a Bayesian network for a class of
situations and evidence about a particular situation in that class, conclusions about the document

and document’s relevant topics can be drawn [19].

The Bayesian network retrieval task is divided into three major steps:

1. Build the network representing the query.
2. Store each document

(a) Extract the features from the document.
{b) Instantiate the features in the retrieval network.

(c) Calculate the posterior probability of relevance.

3. Rank documents according to the posteriors.

The advantages that Bayesian networks bring to the IR task include an intuitive representation
of uncertain relationships and a set of efficient inference algorithms. Robert Fung and Brendan
Del Favero [19] have used a probabilistic IR architecture that assists users who have fixed infor-
mation needs in routing large amounts of material. Towards these goals, they have developed and
implemented a system that allows a user to specify the topics of interest (i.e., information need),

the quantitative and qualitative relationships among the topics, the document features, such as the

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



presence or absence of particular words and phrases, and the quantitative relationships between

these features and the topics. [19].

3.1.2 Developments in Automatic Text Retrieval

In conventional information retrieval, the stored records are normally identified by sets of keywords
or phrases known as index terms. Requests for information are typically expressed by Boolean
combinations of index terms, consisting of search terms interrelated by the Boolean operators and,
or, and not. The retrieval system is then designed to select those stored items that are identified by
the exact combination of search terms specified in the available queries. The terms characterising
the stored texts may be assigned manually by trained personnel, or automatic indexing methods

may be used to handle the term assignment.

Refinements have been introduced into the Boolean processing environment. They allowed the
terms assigned to documents to carry term weights. When term weights were introduced, they were

called the fuzzy-set retrieval model.

3.2 Algorithms used by the IR community

The IR community’s main concern is how to select significant words and phrases from a document
that best describe the document or set of documents [36, 15]. Automatic summarisation of full
documents generates a condensed version of the document[7]. The condensed version serves as an
executive summary, which contains indicative information of the document’s content. Automatic
summarisation of full documents ascertains the relative irnportance of the material and generates
coherent output[7]. The IR community has tried to automatically find significant words in documents
and understand the content or meaning of the document. Although attempts have been made to
utilise natural language text condensation approaches [45], they generally require the selection of

a narrow domain and the availability of domain knowledge. These shortcomings made it infeasible

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for generic text condensation tasks. The following subsections discuss some of the main ideas that

make up the core of our system.

3.2.1 Luhn’s ideas

Luhn assumes that frequency data can be used in extracting words and sentences that represent a
document [36]. He ranked the words in the decreasing frequency of occurrence. After plotting the
graph of frequency related to rank, he found that the curve was similar to the hyperbolic. This is
in accordance with Zipf’s law which states that the product of the frequency of use of words and
the rank is approximately constant. He then excludes the non-significant words and the very high
frequency words. Luhn also used this method to devise a method for automatic abstracting. He went
on to develop a numerical measure of significance for sentences based on the number of significant
and non-significant words in each portion of the sentence. Sentences were ranked according to their

numerical score and only the highest ones would be included in the abstract.

3.2.2 C.J.van Rijsbergen’s attempt

The document’s representation aimed by Rijsbergen [46] consisted simply of a list of class names,
each name representing a class of words occurring in the total input text. A document was indexed

by a name if one of its significant words occurred as a member of that class. Such system consists

of 3 parts:
1. Removal of high frequency words
2. Suffix stripping

3. Detecting equivalent stems

If two words have the same underlying stem, then they probably refer to the same concept and
they should be indexed as such. It is inevitable that a processing system such as this will produce

errors. Fortunately, experiments have shown that the error rate tends to be of the order of 5 per

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cent [2]. Lovins [35] using a slightly different approach to stemming also quotes errors of the same
order of magnitude. The final cutput would be a set of classes, one for each stem detected. A class

name is assigned to a document if one of its members occurs as a significant word in the document.

3.2.3 Limitations of the Traditional Approaches

Traditional approaches to information retrieval use keyword searches and statistical techniques to
retrieve relevant documents (e.g., [61, 53]). Statistical techniques take advantage of large document
collections to automatically identify words that are useful indexing terms. However, word-based

techniques have several limitations:
¢ Synonymy: Different words and phrases can express the same concept.
¢ Polysemy: Words can have multiple meanings [38].

e Anaphora: is a phenomenon of abbreviated subsequent reference to refer back to an entity
introduced with more descriptive phrasing earlier by using a lexically and semantically abbre-
viated form [57]. It is used to make language more concise and avoid repetition and the most
common manifestation of this is in the use of pronouns. For example in the following passage

the anaphoric reference their refers to the earlier target computers:
Computers are often mixed up with questions about their impact on ...
e Phrases: Some words are good indexing terms only in specific phrases.

e Local Context: Some words and phrases are good indexing terms only in specific local

contexts.

¢ Global Context: Some documents do not contain any words or phrases that are good index-

ing terms.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.4 Alternative Retrieval Models
The Vector Model

In the vector space model, documents are identified by sets of attributes, or terms. Instead of as-
suming that all terms are equally important, the system uses term weighting. The vector processing
model offers simple, parallel treatments for both queries and documents. Extensions to the vector
and Boolean models have been proposed including a generalised vector space model based on an
orthogonal vector space. Another common retrieval model is the extended Boolean system which
accommodates term weights assigned to both query and document terms as well as strictness in-
dicators. The extended system thus covers vector processing, Boolean, and fuzzy set retrieval in a
common framework, and it produces a vastly improved retrieval performance over simple Boolean

operations.

The Probabilistic Model

The probabilistic retrieval model differs from those previously discussed. It represents an attempt
to set the retrieval problem on a theoretical foundation. In the classical probabilistic models, the
needed term probability is estimated by accumulating a number of user queries containing a term
and determining the proportion of time a document is found relevant to the respective queries.
Alternatively, a fixed query is considered and an attempt to determine the probability of an arbitrary

document containing a query term will be judged relevant.

The probabilistic retrieval approach accommodates a large number of different phenomena about
terms and documents as part of the probabilistic estimation process. This includes term co-occurence
information, term relationships derived from dictionaries and thesauruses, and prior knowledge about

the occurrence distributions of terms.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.5 Enhancing the document representation

The conventional wisdom is that the keyword-type systems, where the information items are rep-
resented by sets of manually or automatically chosen index terms, have run their course. Most
keywords are believed to be ambiguous and are often poorly represented by small collections of
individual terms [54]. It is therefore widely believed that the keyword approach is not adequate for
text content representation in information retrieval. By extension, the identification of text content

by weighted term sets may also be unacceptable. Quoting from Blair: [6]

No number of brute linguistic facts (word statistics) can be added up to give us the
meaning of a text, where the meaning of a text would include such things as its subject,
intellectual content, context, use, purpose, or links to other documents.

The available experimental evidence indicates that the use of abstracts in addition to titles brings
substantial advantages in retrieval effectiveness. However, the additional utilisation of full texts of
the documents appears to produce very little improvement over titles and abstracts alone in most

subject areas [50]. This is one of the main reasons why the abstract is included in the Semantic

Header.

3.3 Natural Language Processing in IR

3.3.1 Progress of Natural Language Processing in IR

The goal of an information retrieval system is to locate relevant documents in response to a user’s
query. Documents are typically retrieved as a ranked list, where the ranking is based on estimations
of relevance [5]. Lexical ambiguity is a pervasive problem in natural language processing, and

previous literature divides it into two types: syntactic and semantic [29].

To process a sentence of a language, the tokens must be isolated and identified. For Natural
Language Processing, or NLP, lexical processing operates at the single word level and it involves

identifying words and determining their grammatical classes or parts of speech so that higher levels

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of language analysis can take place [57]. This usually consists of looking up a dictionary or lexicon,
essentially a list of known words and their legitimate morphological variants. Ideally, lexical pro-
cessing determines one base form for each word. Research into syntactic analysis of natural language

has been concerned with the construction of wide coverage grammars[57).

The main sources of structural syntactic ambiguity in English are the attachment of prepositional
phrases, the construction of nominal compounds anc! the scope of coordination and conjunction. For
example, these two sentences:

Remove the bolt with the square head.

Remove the bolt with the square wrench.

are both lexically and syntactically identical but there is a genuine structural ambiguity as we do
not know to what the prepositional phrases with the square head or with the square wrench should
be attached. The case of nominal compounds occurs when a noun or nouns are used as modifiers
of another noun, making a compound structure. Conjunction is one of the most frequently used
constructions in natural language but the scope of the conjunts, i.e. what is being conjoined, can

almost always be ambiguous.

The semantic level of language analysis is concerned with meaning and focuses on broad questions
like what type of knowledge representation framework should be used [57]. On another level, there
are semantic constraints on what should make semantically sensible natural language statements.
The semantic level language analysis should be able to analyse grammatically parsed text into a
knowledge representation. This is because a sentence may have a number of semantic interpreta-
tions, possibly arising from a number of syntactic interpretations, and as many of these should be

eliminated.

The difficulty with semantic processing is that all the properties of every object and the legitimate
arguments of all verbs must be known [57]. As a possible remedy to this problem, huge knowledge

base could be built.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Detecting anaphora and resolving references would improve the understanding of a text. Even
so, detecting anaphora is often difficult as there are no indicator phrases or terms. Some words
are potentially anaphoric but not always so and anaphoric references can include many constructs.
Although Liddy [13] lists almost 150 words which could be indicators of an anaphoric construct, the
problem of reliably resolving anaphora still remains. It is important to note that fully-fledged NLP
is being used in information retrieval [57]. This has led to the emergence of the application known
as conceptual information retrieval. There, once the user requests information, he/she is given the

information directly, instead of just receiving its reference.

Lexical level language processing in information retrieval

The simplest applications of NLP to information retrieval have been at the word level. Indexing based
on some normalised or derived form of individual words occurs in the input [57]. An alternative to
the popular stemming and conflation procedures would involve determining the base forms of words
from a lexicon lookup. Building such a lexicon is expensive considering its marginal improvements
over mechanical stemming. For those reasons, the idea has never really been pursued. However,
lexical level language analysis has had a surge of interest recently with the increased availability of
machine-readable dictionaries (MRDs)[57]. Its obvious use is to index by word senses rather than by
word base forms. In information retrieval experiments, indexing by word senses using MRDs initially
gave disappointing results in terms of retrieval effectiveness [57). Because of this, researchers believe
that it may not be necessary to determine the single correct sense of a word. Instead a sufficient
understanding that allows one to rule out unlikely senses and to weigh likely senses highly, Krovetz
and Croft stressed the importance of the word senses, that will provide a significant separation
between relevant and non-relevant documents [29]. They mentioned that word ambiguity and the

use of related or synonym words are two problems that arise when using words to represent the

content of a document.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Syntactic level language processing in information retrieval

NLP techniques have been used to help index texts by elements more complex than word forms.
Syntactic analysis can be used to analyse text in order to determine the boundaries of noun phrases
which could then be used as internal representations. Indexing texts on a noun phrase basis using
NLP techniques was done in the IOTA system [8]. One major problem of indexing by noun phrase
units is the variety of ways of representing a complex concept in natural language. Three approaches
have addressed the issue of ambiguity in syntactic analysis of texts for indexing purposes: ignor-
ing ambiguity, normalising the identified phrases or indexing by structures which incorporate the

ambiguities.

Ignoring the ambiguity allows texts to be indexed by phrases taken directly from the text. A large

amount of work in this area has been done by Salton and others at Cornell University [55].

Normalising indexing phrases from texts and from queries into some standard form is used in the
CLARIT project at Carnegie Mellon university [18]. A first order thesaurus for a domain, essentially
a phrase list, is first generated automatically. Input texts are parsed and candidate noun phrases
are identified. These are then compared to the thesaurus. They are classified as either:

1. exact (identical to some phrase in the list),

2. general (terms are constituents of those in the list), or

3. novel (new terms not on the list).

This approach always uses terms from the list as the indexing units and thus always yields the

same syntactic form for a concept which could have been expressed in a number of different ways

[18].

Encoding the ambiguity in some structure and allowing the retrieval operation to make allowances

for this, handles the syntactic ambiguity in syntactically based indexing.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Semantic level language processing in information retrieval

Any piece of text which contains information essentially consists of a description of objects and
actions on those objects. A number of conceptual information retrieval systems are described in
the literature: SCISOR [23], RESEARCHER[32] and OpEd[1]. SCISOR [23] parses and analy-
ses input stories into a knowledge base and then it answers users’ questions about the content.
RESEARCHER operates in the domain of US patent applications. Trying to resolve outstanding
ambiguities, RESEARCHER uses limited sernantics to resolve syntactic ambiguity and then uses
the knowledge assimilated from the whole of the patent application it is processing [32]. OpEd is
an editorial comprehension and question answering system which answers questions about beliefs,

belief relationships and goals of those who have made arguments in the input texts [1].

3.4 Automatic Sentence Extraction used in Title and Ab-

stract selection

Text processing methods based on a determination of term or sentence importance have been used
not only for indexing but also for automatic abstracting purposes [52]. It was hypothesised that
an extract of a document, that is a selection of significant sentences can serve as an abstract. This
hypothesis concerning the substitutability of extracts for abstracts has been discussed in [15]). To
achieve this, each sentence in the source text is scored according to some measure of importance,
and the best rated sentences are selected [59]. Ideally, given a document represented as natural
language text, one would like to construct a coherent well written abstract that informs the readers
of the contents of the original, or at least indicates whether the full version may be of interest to the
reader. A useful first step in the automatic or semi-automatic generation of abstracts from source
texts is the selection of a small number of sentences, which are deemed to be important for purposes

of content representation, from the source text [59].

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The extraction methods used over the years start with a calculation of word and sentence sig-
nificance, similar in spirit to the computation of the term weights. Criteria for the selection of
important terms may be positional (the term’s location in the document), semantic, or pragmatic
(a system which would consider proper names as highly significant). Statistical term weights may
be also criteria in selecting important terms. Since the frequency criteria are not very reliable, ad-
ditional criteria should be used such as contextual inference (the word location or the presence of

cue words), and syntactic coherence criteria [36, 16, 15, 49, 14, 4, 42, 43].

Kupiec et al.[30] describe a classification task on the basis of a corpus of technical papers with
summaries written by professional abstractors. Their system identifies sentences in the text which
also occur in the summary. Then it acquires a model of the abstract-worthiness of a sentence as
a combination of a limited number of properties of that sentence. These properties include the
sentence location in the document, the sentence length and the presence of thematic words in the

sentence.

Simone H. Teufel and Marc Moens [59] report on a replication of Kupiec’s experiment with different
data. Summaries for their documents were not written by professional abstractors, but by the
authors themselves. This produced fewer alignable sentences to train on. They used alternative
meaningful sentences (selected by a human judge) as training and evaluation material, because this
has advantages for the subsequent automatic generation of more flexible abstracts. They employed
five different heuristics: four of the methods used by Kupeic et al as well as the title method
described below. Kupeic et al’s methods were the cue phrase method, location method, sentence

length method and thematic word method.

1. Cue phrase method: it seeks to filter out meta-discourse from subject matter. Cue phrases
were manually classified into five classes. This corresponds to the likely-hood of a sentence
containing the given cue to be included in the summary. A score of minus one means very

unlikely to be included in the summary, whereas a score of plus three means very likely to be

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



included in the summary.

2. Location method: Paragraphs at the start and at the end are more likely to contain material
that is useful for a summary. These paragraphs tend to include crucial information. Simone
et al’s algorithm assigns non-zero values only to sentences which are in document peripheral

sections. Sentences in the middle receive a zero score.

3. Sentence length method: All sentences under a certain length (fifteen tokens including punc-
tuation are given a score of zero. All sentences above that criterion are assigned a score of
one.

4. Themalic word method: It identifies key words that are characteristic for the contents of the

document. The top ten scoring words are chosen as the thematic words. Sentence scores are

then computed as a weighted count of thematic words in that sentence.

5. Title method: Words occurring in the title are good candidates for document specific concepts.
Simone et al. also experimented by taking into accounts words occurring in the headings.

Better results were generated using title words only [59].

3.5 Text Classification/Categorisation

An important step in building up the document database of a full text retrieval system is to classify
each document under one or more classes according to the topical domains that the document

discusses. This is commonly referred to as classification. Automatic classification has two major

components:[24]

1. The classification scheme, which defines the available classes under which a document can be

classified and their inter-relationships.

2. The classification algorithm, which defines the rules and procedures for assigning a document

to one or more classes.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Wong, Kan and Young presented an automatic classification approach called ACTION [24]. The
key idea behind it is a scheme for measuring the significance of each keyword in a given document.
That scheme takes into account not only the occurrence frequency of a keyword, but also the logical

relationship between the available classes.

Text categorisation systems assign predefined category labels to texts. For example, a text cat-
egorisation system for computer science might use categories such as operating systems, program-
ming languages, Al or information retrieval [47]. Text Categorisation are typically applied to static

databases [47].

The relevancy signatures algorithm [48] uses linguistic phrases, the augmented relevancy signatures
algorithm uses phrases and local context, and the case-based text classification algorithm uses larger
pieces of context. These three algorithms were evaluated and the results suggested that information
extraction techniques can support high-precision text classification. In general, using more extracted

information improves performance.

There have been approaches using knowledge bases relying on a domain-specific dictionary to drive
the information extraction system [48]. It seems reasonable to believe that we could produce accurate
classifications if we could actually understand the documents. However, natural language under-
standing is an expensive endeavour that can strain computational resources. Thus, some researches
have turned their attention to information extraction that extracts specific types of information
from a document [48]. For example, in the domain of terrorism, an information extraction system
might extract the names of all perpetrators, victims and weapons that were involved in a terrorist
attack. The main advantage of this a.pProach is that portions of a text that are not relevant to
the domain can be effectively ignored. Since the system is only concerned with the domain-specific
portions of the text, some of the most difficult problems in NLP are simplified. As a result, informa-

tion extraction is a practical and feasible technology that has achieved success in the last few years

(33, 48].

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Edmundson [17] describes new methods of automatically extracting sentences from documents
for screening purposes. His method describes the sentence significance, the high content words
previously described and three additional components: pragmatic words (cue words), words found
in the title and the headings, and the structural indicators (sentence location). An attempt was
made by Edmundson to classify eligible sentences as to qualitative degree of extract-worthiness. In
practice, however, it did not prove satisfactory for sentence selection. The principles he followed
in devising the guide to the development of automatic extracting methods so as to yield close

approximations to target extracts were:

1. Detect and use all content and format clues to the relative importance of sentences that were

originally provided by the author, editor or printer.
2. Employ a system of reward weights for desired sentences and penalty for undesired sentences.
3. Employ a system of parameters that can be varied to permit different specifications for extracts.

4. Employ a method that is a function of several linguistic factors (syntactic, semantic, statistical

locational, etc.).

Thus, the four basic methods Edmundson used in his automatic extracting system are the Cue, Key,

Title and location methods.

Clearly, there are extracting clues that have not been exploited-in captions of figures and tables,

in footnotes and references.

Automatic News Extraction System

The Automatic News Extraction System (ANES)[7] initial technical approach was similar to that
taken by Johnson et al[26]. In addition to constructing summaries by extracting whole sentences from
the source documents, Johnson also used such phrases as ”the objective of this study...” to indicate
key content. The ANES process of summary generation is made up of four major constituents:

statistical corpus analysis, signature word selection by applying a term frequency and the inverted

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



document frequency model, sentence weighting, which is computed by summing the weights of the

individual signature words present in the sentence, and sentence selection[7].

3.6 Retrieval and Information extraction systems

3.6.1 The SMART Retrieval System (Salton)

The SMART system is a sophisticated text retrieval tool based on storing all information terms in
a vector of terms. In principle, the terms might be chosen from a controlled vocabulary list or a
thesaurus [55]. After performing the SMART experiments [51], some conclusions were drawn. The

main conclusions are listed below:

Document length Document abstracts are more effective for automatic content analysis purposes
than are document titles. Improvements appear possible if the abstracts were replaced by larger
text portions. The improvement, however, is not large enough to conclude that full text processing

is superior to abstract processing.

Synonym Recognition Dictionaries providing synonym recognition produce statistically signifi-

cant improvements in retrieval effectiveness compared with word stem matching procedures.

Order of merit A summary of the results after applying the SMART system shows that abstract
processing with phrase and synonym recognition had the best results. Next most effective were the
results that were drawn from using weighted word stem matching and statistical word associations
using abstracts for analysis purposes. The less effective results were upon matching logical word
stem and disregarding term weights. The least effective results were when only document titles were

used for analysis purposes.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6.2 Oracle ConText-Text Management System

One of the most critical challenges facing business today is managing information. Unstructured,
primarily textual information, becomes trapped as essentially dead fields in traditional databases.
As aresult, information that resides as text documents, manuals, reports, e-mail and faxes has been

largely inaccessible to the corporate decision makers who need it most [66, 67).

The Oracle? ConText option is a fully integrated text management solution that enables users to
process text-based information as quickly and easily as relational data. Oracle context analyses the
contents and understands the structure of the English text it reads. The Oracle Release 7.3 ConText
option consists of two separate, yet closely interrelated functions: a text management architecture
contained entirely within Oracle7 and a text retrieval feature which uses natural language processing
technology to identify themes and content in text. It is also capable of analysing the thematic content
stored text and generating automatic summaries. ConText’s core is its parser, a sophisticated and
robust collection of lexical attributes (dictionary information) and parsing rules. The parser consists

of five data collection layers. These layers are :

1. Syntax, theme and grammar layers which analyse documents at the sentence level and produce

a structural and thematic representation of sentences.
2. Connotation and discourse layers which analyse documents at greater-than-sentence level and

produce a representation of discourse dynamics.

In other words, these modules track the rise and decay of themes/subjects, and assign a sub-

Jject matter description of sentences, paragraphs, and documents. In addition, ConText’s Concept

Processing Engine represents an impressive English language knowledge base.

Systems that rely on simple word recognition and repetition often miss the actual meaning of a
document and as a result produce an enormous amount of irrelevant output. By breaking down the

text into its constituent grammatical elements and determining how these elements contribute to

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the overall meaning, ConText works to understand the text it processes. It then uses this knowledge
to produce a database index which can identify the development of key themes and determines
their relative prominence [40]. Unlike other products that simply count words or use a hierarchical
thesaurus to determine the main theme of a document, ConText parses every sentence in a document

to determine the relative weight of the different themes.

The Oracle ConText Lexicon is the heart of this text retrieval system. The Oracle ConText
Lexicon contains a vast dictionary of over 1,000,000 words and phrases as well as the linguistic rules
that bind them into thematic units. The lexicon is designed to recognise the vocabulary used in

over 1,000 industries and can be augmented by user dictionaries.

The ConText option provides automatic text reduction, which creates summaries conveying the
main ideas and concepts of full documents. Text reduction condenses large documents to a man-
ageable level. In addition to text reduction, ConText contains a powerful text classification feature

which categorises documents according to linguistically identified themes rather than word frequency

and statistics.

3.6.3 Nordic WAIS/World Wide Web Project

The Nordic WAIS/World Wide Web Project works on Improving Resource Discovery and Retrieval

on the Internet [3]. The project has three main parts:

1. A demonstration of how an existing library system can be integrated in the world of open

client/server networking.

2. Simplifying the use of Wide Area Information Server, or WAIS, database servers by establishing

a World Wide Web, or WWW, front-end service. Two activities are involved:

(a) Constructing a subject tree of WAIS databases which can be browsed within WWW.

(b) Enhancing the current WWW gateway to WAIS to support the full WAIS functionality.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. Simplifying the use of WWW by supplementing the hypertext browsing with a search option,

based on a WAIS index of WWW resources.

In using WWW as a smart front-end to WAIS databases, a set of cooperating programs that im-
plement automatic indexing and classification of WAIS databases has been developed by the Nordic
project. The Nordic’s automatic classification depends on UDC [3], an English medium classification
scheme. The dynamic nature of the information sources on the network makes it necessary to have

automatic tools that index and classify material. The algorithm used is as follows:
1. From the different fields of the selected document, words are extracted into a number of groups:

e words from the description field
e words from the subject field
e words from the keyword-list field

e words from the description field marked as keywords together with the name of the

database.

2. A list of suggested classifications is constructed by comparing words from these groups with
UDC'’s vocabulary. When a match between the vocabulary and a word is found the correspond-
ing classification is added (restricted to the top 2 levels) to the list of suggested classifications
with a certain weight. The weight depends on which group the matching word originates from.
As an illustration, keywords in the subject field have higher weights than ordinary words in

the description field.

3. From the list of suggested classifications, the final classification is made. It is based on the

accumulated weights for each proposed classification.

The Nordic project is not tied to UDC but can be used with other classification schemes such as

the Library of Congress in order to produce different views of the subject trees.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6.4 Harvest’s Essence

Overview of Harvest’s Essence

Essence’s main objective is to extract indexing information from an input document. Content index-
ing requires type-specific processing to extract information effectively. By exploiting the semantics
of common file types', Essence generates compact yet representative file summaries that can be used

to improve both browsing and indexing in resource discovery systems [22].

Essence decomposition

Essence decomposes the information extraction problem into four components that are independent

of how data are stored, updated or exported. The components are listed below:
1. The type recognition step that uses various methods to determine a file’s type
2. The presentation unnesting step that transforms nested files into an unnested format.
3. Candidate selection step, selects which objects are to be summarised.
4. The summarising step, which applies a type specific extraction procedure to each selected

object.

Type Recoguition

Essence recognises file types using a combination of file and site naming conventions, content testing,
and user defined methods. It can also use explicit file typing information for environments that

contain such information. The two main type recognition steps are:
¢ Naming conventions and heuristics.

¢ Examining file contents in determining the file types.

1See The Summariser's functions for each document table at the end of this subsection

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Presentation Unnesting

The type recognition step sometimes encounters files encoded to one or more presentation layer data
transformations. These transformations arise because of heterogeneity and other complexities in a

distributed environment. They include operations such as compression and ASCII encoding.

When a presentation nested file is encountered, it is unnested into one or more result files. The
result files themselves can also be nested. In addition to unnesting the input files, the presentation

unnesting step also keeps a record of the nested origin of each unnested file, for use by the candidate

selection and summarising steps.

Candidate Selection

Given a set of typed objects, the candidate selection step chooses objects to summarise. It attempts

to eliminate redundancy among related files.

Essence Summarising Subsystems

The summarising step applies an extraction procedure, called a summariser, to each selected object,
based on the type of information uncovered in the type recognition step. Each summariser is asso-

ciated with a specific file type; it understands the type well enough to extract summary information

from the file.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



| Type | Summariser Function

Audio Extract file name

Bibliographic Extract author and titles

Binary Extract meaningful strings and manual page summary

C, CHeader Extract procedure names, included file names,
and comments

Dvi Invoke the Text summariser on extracted ASCII text

FAQ, FullText, README | Extract all words in file

Framemaker Up-convert to SGML and pass through SGML summariser

Font Extract comments

HTML Extract anchors, hypertext links, and selected fields

LaTex Parse selected LaTex fields (author, title, etc.)

Mail Extract certain header fields

Makefile Extract comments and target names

ManPage Extract synopsis, author, title, etc., based on “-man” macros

News Extract certain header fields

Object Extract symbol table

Patch Extract patched file names

Perl Extract procedure names and comments

PostScript Extract text in word processorspecific fashion, and pass through Text
summariser.

RCS, SCCS Extract revision control summary

RTF Up-convert to SGML and pass through SGML summariser

SGML Extract fields named in extraction table

ShellScript Extract comments

SourceDistribution Extract full text of README file and comments from Makefile
and source code files, and summarise any manual pages

SymbolicLink Extract file name, owner, and date created

Tex Invoke the Text summariser on extracted ASCII text

Text Extract first 100 lines plus first sentence of each remaining paragraph

Troff Extract author, title, etc., based on “-man”, “-ms”, “-me” macro
packages, or extract section headers and topic sentences.

Unrecognised Extract file name, owner, and date created.

Table 1: The Harvest’s Summarisers’ functions for each document

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.7 Conclusions

In this chapter, we described approaches in information retrieval, document indexing and text clas-
sification. We will be using some of these ideas in our system. Since the term position in the
document is weighted, we will give an importance of the term location in the document. Since some
of the available experimental evidence indicates that the use of abstracts in addition to titles brings
substantial advantages in retrieval effectiveness [50], and since Salton’s SMART system reveals that
using the abstract rather than the whole text gives the best results in information retrieval, the
abstract and the title are used as two of the components of the Semantic Header. Since the titles
could be good candidates for document specific concepts as Simone et al stressed, we will assign
high weights to the terms located in the abstract and title fields. The additional utilisation of full
texts of the documents appears to produce very little improvement over titles and abstracts alone in
most subject areas [50]. In addition to assigning term weights, our system used the term frequency

of occurrence addressed by Luhn.

The automatic classification approach used in ACTION relates the significant keywords to a set
of available classes. Our system’s thesaurus concept will be based on this idea; however, our system
relates controlled terms with a set of subject headings. Our document classification scheme is based
on Nordic’s classification scheme. Nordic classifies documents by looking for a match between a set
of vocabulary and the words in the document. Nordic uses words extracted from a set of groups
and UDC’s vocabulary to classify a document. Each classification gets a weight depending on which
group the matching words originated from. The classification having the highest weight is selected.
Our system will look for a match between a set of different weighted terms generated from the
document and a set of controlled terms. - The highest weighted subject headings associated with the

matched controlled terms will be selected.

Luhn’s automatic abstracting idea will be used in generating an abstract for a document and

Harvest’s file type recognition will be implemented in our thesis.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

ASHG’s Thesaurus

4.1 The Thesaurus in IR

A thesaurus is a set of items (phrases or words) plus a set of relations between these items [25]. The
Thesauri commonly used in IR have shown inconsistent effects on retrieval effectiveness, and there

is a lack of viable approaches for building a thesaurus automatically [25].

There are two types of manual thesauri. The general purpose and word based thesauri like
Roget’s and WordNet contain sense relations such as antonym and synonym but are rarely used
in IR systems. The IR oriented and phrase based thesauri such as INSPEC, Library of Congress
Subject Headings (LCSH), and Medical Subject Headings (MeSH) are widely used in commercial
systems [25]. The major drawback of both types are that they are expensive to build and hard to

update in a timely manner.

This thesis addresses the issue of constructing a thesaurus in a semi-automatic fashion. We used

a number of rules in merging the subject headings found in INSPEC [65], LCSH [69] and ACM [70].

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 The Thesaurus for ASHG

The ASHG’s Thesaurus is composed of a three level subject hierarchies and a set of control terms
associated with the subject headings found in the subject hierarchies. The Thesaurus used by ASHG
contains four object classes: Level 0 which represents the general subject of the subject hierarchy,
Level_1 which represents the sub-subject of the general subject and is derived from Level 0; Level 2
which represents the sub-subject of the Level_I subject and is derived from Level 1, and finally
.Control.term which contains the root terms that are derived from the subject headings. A root term

is the origin of all possible terms that can be generated from it by adding the suffixes and prefixes.

4.2.1 The Subject Hierarchies

Since different subject headings may be used to convey the same subject, and since different people
may have different perspectives on the same single subject, controlled subject headings were derived.
The CINDI system focuses on the standardisation of subject headings. This database helps the

provider of the primary resource in selecting the correct subjects and sub-subjects’ headings for the

semantic header entry.

CINDI’s subject hierarchy is made up of three levels, where level_0 contains the general subject
heading. Currently we have included only two general subject headings: Computer Science and
Electrical Engineering. Level.I contains all the subjects that fall under level_0 subjects, and similarly

level_2 will contain more precise subjects that fall under level ! subjects.

4.2.2 Building CINDI’s Classification

ACM, INSPEC and LCSH were the main building blocks of CINDI’s three level Subject Hierarchy.
ASHG’s computer science subject hierarchy used ACM’s subject hierarchy as the starting point, and
ASHG?’s electrical engineering subject hierarchy was based on INSPEC’s subject hierarchy. We have
exploited LCSH’s subject headings relations to refine both hierarchies. LCSH contained relations

between subject headings such as BT (Broader Term), NT (Narrow Term), UF (Used For), and RT

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Related To). In order to augment ACM and INSPEC subject hierarchies, a search for an ACM
or INSPEC subject heading was made in LCSH. If a match was found, the narrow terms found in
LCSH under the matched subject were added to the list of subjects or terms under the ACM or

INSPEC’s matched subject heading.

This augmentation produced a hierarchy composed of five or six levels. Since CINDI’s subject
hierarchy was limited to only three levels, rules were applied to merge these subject headings. The
resulting subject hierarchy was formed of three level subject hierarchy and one additional level. This

last level contains terms used as control terms associated with the Level_2 subject headings.

Rules used in Merging the subjects of different levels

1. The Computer Science’s subject hierarchy’s general ( Level_0) subject is Computer Science. The
Electrical Engineering’s subject hierarchy’s general ( Level_0) subject is Electrical Engineering.

Similarly, other subject hierarchies will be disciplined based as in the LCSH.

2. Level_I and Level 2 subject headings found in the augmented ACM (or INSPEC) were merged
to form one level, the CINDI’s Level_I subject heading. For some of the subject headings found
in Level.2 which contained the subject headings found in Level_1, the Level.I subject headings
were dropped. The same rule was applied on subject headings found in Level 3 and Level 4
to give the CINDI’s Level_2 subject heading. For example, Software and Software Engineering
were found in the augmented ACM Level-1 and Level_2 subject headings respectively. We

dropped Software, to yield Software Engineering as CINDI’s Level_! subject heading.

3. Some of the subject headings found in the Level.f and Level 2 a.ugmenteci ACM (or INSPEC)
subject hierarchies were concatenated with a colon to form the CINDI’s Level_I subject head-
ing. The same rule was applied on subject headings found in the augmented ACM (or INSPEC)
Level 8 and Level_{ to yield CINDI’s Level.2 subject heading. For instance, Office Automation
and Spreadsheets were found in the augmented ACM (or INSPEC) Lewvel.3 and Level 4 sub-

ject headings respectively. We concatenated them to derive CINDI’s Level_2 subject heading,

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Office Automation: Spreadsheets.

4. The Level_5 and Level_6 augmented ACM (or INSPEC’s) subjects were used as controlled

terms associated with CINDI’s Level_2 subject headings. Copyrights, for example, was used

as a control term associated with CINDI’s Level_2 subject heading, Hardware and Software

~f————

Augmentation

LCSH
Subject Headings

CINDI’s Subject Hierarchy

Level_0 General
Subject Heading

]

Level 1
Subject Heading

.

Level_2
Subject Headings

Protection
ACM (orINSPEC
(or ) »
Subject Hierarchy

Augmented ACM (or INSPEC ) Subject Hierarchies
e
1

IR Level 1
I Subject Heading
1
1
1
|

_:_> .Level_2 ’
i Subject Headings
S F
Frmmmmm e m e e
1 (]
1

i~ Level _3
) Subject Headings
!
i
: (]
1

- Level_4
: Subject Headings
RS B
1
!

— Level 5
| Subject Headings
|
[
]
1

L Level_6
: Subject Headings

Figure 4: Transforming ACM (or INSPEC) Subject Hierarchy into CINDI’s Subject Hierarchy

42

| Term related

Controlled

to Level_2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The subject headings’ classes

Having described the building of CINDI’s three level subject hierarchy from an augmented ACM

and INSPEC subject hierarchies, we present the three level subject headings classes:

persistent class Level_0 {

protected:
indexable char lev_O[MAX1];

public:
Level_O(char * lv_0);
char* get_lev_0() { return lev_0; };
virtual char* get_subject() { return lev_0; };
virtual void print();
persistent Level_O* isLevel_O(char *str);
void list_all_level_0();
int list_substr_O(char* str, int count);

};

persistent class Level_i1 : public Level 0 {

protected:
indexable char lev_1[MAX1];

public:
Level_1 (char *1lv_1, char *1lv_0);
virtual void print();
virtual void print_all();
persistent Level_1#* isLevel_1(char *str);
void list_all_level_i(char* lev_0);
int list_substr_i(char* str, int count);
char *get_lev_1() { return lev_1; }
virtual char* get_subject() { return lev_i; };
char* get_subject_0(char *str);

}

persistent class Level_2 : public Level_1 {
protected:
indexable char lev_2[MAX1];

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



public:
Level_2 (char *1v_2, char *lv_1, char *1v_0 );
virtual void print();
virtual void print_all();
persistent Level_2* isLevel_2(char *str);
void list_all_level_2(char* lev_0, char* lev_1);
int list_substr_2(char* str, int count);
char* get_lev_2() { return lev_2; }
virtual char* get_subject() { return lev_2; };
char* get_subject_i(char *str);

};

Since the three subject headings classes have similar characteristics, we will only describe the
methods of the Level 2 class. The constructor Level 2 initialises Level 2’s and its parents’ values.
The method print() prints Level_2 object into the result file. The method prini_all() prints Level 2
object as well as its parent objects Level.f and Level 0. The method isLevel_2returns a Level_2 object
whose value is ’str’, otherwise it returns 0 or NULL pointer. The method lisi_all_level 2 prints into
the result file all Level_2 objects where their Lewvel .0 and Level_1 subject values correspond to ’lev_(’

and ’lev_1’, respectively. Its definition follows:

persistent Level_ 2 *Lev_2;
readonly trans {
for (Lev_2 in Level_2) suchthat (strcmp(Lev_2->lev_0, lev_0) ==
&& strcmp(Lev_2->lev_1i, lev_1) == 0)

Lev_2->print();

The method list_substr_2 prints all objects each of whose value starts with the string ’str’, and

it returns the number of such objects found. The definition of this method is:

persistent Level_2 *Lev_2;
readonly trans {

for (Lev_2 in Level_2) suchthat (starts_with(Lev_2->lev_2,str) == 1) {
Lev_2->print_all();

++count;

}

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The methods get_lev.2 and get_subject return a pointer to the Level 2 subject of the current
object. Both are used in document classification. The method gef_subject_I returns a pointer to the
Level_I object which is the parent of a Level 2 object whose value is the string ’str’. Its definition

follows:

persistent Level_2 *Lev_2;
for (Lev_2 in Level_2) suchthat (cmp_case(Lev_2->get_lev_2(),str) == 0)

return Lev_2->lev_1;

4.2.3 The Control Term Subject Association

The CINDI system uses a thesaurus to help the user in the registering and search processes. One
such need for a thesaurus is in avoiding chaos introduced by differences in perception of different

indexer. Hence, some form of standardisation of terms used has to be enforced.

The main reason behind the Control Term Subject association is to extract or classify the primary
source under a number of subject headings by comparing the significant list of words contained in
the document with the list of controlled terms. An association between the controlled terms and

their corresponding subject headings is created.

Each controlled term has three lists of subject headings attached to it. The three lists correspond
to the general subject headings, sub-subject Level_1 subject headings, and Level_2 subject headings.
Qur controlled terms were based on the terms found in CINDI’s subject hierarchy and the additional
terms that are associated with CINDI’s Level_2 subject headings. For each subject heading found
in CINDI’s subject hierarchy and the additional terms, we used their constituent English none
noise words as their corresponding controlled terms. For example, the control term compute will
be associated with Computer Science general subject heading. Similarly, the control term kardware
will be associated with Hardware integrated circuits and Hardware performance and reliability level .1
subject headings and Hardware Simulation Design Aids level 2 subject heading. Each controlled

term is associated with one or more subject headings.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.4 Building the Controlled Terms

The subject headings found in CINDI’s Level.0, Level-1 and Level 2 will be used as the basis for
finding the controlled terms. In addition, the additional terms associated with CINDI’s Level 2

subject headings are mapped into some controlled terms.

Deriving the controlled terms

Mapping CINDI’s subject headings terras into controlled terms involves:

1. Since the controlled term dictionary is only composed of significant words, English stop words
are removed from CINDI’s subject hierarchy headings and the additional terms associated with

CINDI's Level_2 subject headings. English Stop words are found in Table 2.

2. Applying ASHG’s stemming process to the remaining list of words in order to get their root,

which will be stored in the list of controlled terms.

3. Generating a list of words to be added to the spell check dictionary. These words are found
in the subject headings but not in the spell check dictionary. Words like WWW would be
checked as wrong by the Unix spell check command, because WW W is not found in the spell’s

dictionary. So, WWW should be an added to the list of controlled terms.

Associating the controlled terms with the subject headings

A document often covers a number of subjects or domains. Naturally some of them are of higher
importance than others. CINDI uses the words in a document to classify it under a list of subject
headings. This list of words from the document are matched against the controlled terms, generated
above. The association between the squect. headings and the controlled terms is constructed by
comparing the root words found in these subject headings with the CINDI’s controlled terms. If a
match is found, then this subject heading is associated with the controlled term. The reason behind

building such an association is that ASHG will generate a suggested list of subject headings using

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the words found in the ducument by consulting the Controlled term subject association. A summary

of the steps used is discussed below:

1. Split each subject heading and the terms associated with CINDI’s Level_2 subject headings

into the words they are made up of.
2. English noise words found in the list of words are removed.
3. Words are checked using the spell command.
4. Similarly, words not found in the spell Unix dictionary and the new added words are dropped.
5. Apply the stemming process to generate the root controlled terms from the words.

6. Each root controlled term will be associated with the subject headings that contains it.

[ Subject Headings ]

v

Split Subjects Stemming Process
into Words

' Y

Remove English
Noise Words

Y

Remove words Not

in SPELL dictionary
nor in Added new
words

'
O

Word_Subject
Association

Root words
Associated

with their
Subject headings

—

Figure 5: Associating words’ roots to their subject headings

For example, Theory of computation by abstract devices subject heading is divided into the

following words: theory, of computation, abstract, by, and devices. The English noise words such

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as of and by are dropped. Steps 3, 4 and 5 are applied on the remaining terms. The generated

root terms such as abstract, theory, computation, and device are associated with the initial subject

heading.

The Control Term’s class
Having described the controlled term subject association, we present the control term class:

template<class T>
persistent class _SubjectPtrWrapper {
public:
persistent T * info;
_SubjectPtrWrapper(persistent T #*inf) : info(inf) { }
_SubjectPtrWrapper() : info(NULL) { }
_SubjectPtriWrapper(const _SubjectPtrWrapper<T>& wrap) { info=wrap.info; }
int match (const _SubjectPtrWrapper<T>% wrap) { return (info==wrap.info); }
void print() const { info ->print(); }
char* Getsubject() const {return info->get_subject(); }

};

/* The ODE’s template feature for _SubjectPtrWrapper<T> did not

* work out so this redundant type definitions were used.

*/
typedef _SubjectPtrUWrapper<Level_0> Level O_wrap;
typedef _SubjectPtrWrapper<Level_i> Level_1_wrap;

typedef _SubjectPtrWrapper<Level_2> Level_2_wrap;

persistent class stack_array_0 {

public:
stack_array_0(int = 1); ) /* Comstructor */
void push(persistent Level_ 0 *); /* Adds a persistent level_0 subject */
int isempty() comst {return num == -1; }
int isfull(); /* Check if the array is full */

persistent Level O_wrap * get_ptr() { return Stackptr; }

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



int get_num() {return num;}
int get_size() { return size; }
int search(persistent Level_0 *); /* Search for level_0O in array */
void remove(persistent Level_0 #*); /+ Removes the pointer to level 0
* from array
*/
void print_all();
private:
int size;
int num;
persistent Level O_wrap * Stackptr; /* Pointer to the array of level O
* wrapper.
*/
I

There are three similar classes for stack.array for the three subject headings levels. Therefore, we
will describe the stack_array.0 class. It contains three private data members: size, which is the size
of the array, rnum, which is the number of elements in the array, and Stackptr, which is a pointer to

a persistent Level 0_wrap type. Level 0_wrap is _SubjectPir Wrapper< Level_(>, which is a wrapper

for subject level 0 headings.

The constructor stack.array-0 initializes the array by creating an array of Level_.0_wrap of size s

or one, and it sets the size and num. Its definition follows:

stack_array_O::stack_array_O(int s)

{

size = s;

num = 0;

Stackptr = pnew Level_O_wrap[sizel;
}

The method isempty checks if array is empty. The methods get_pir, get_num, and get_size are

defined in the class description. The method pusk adds a pointer to a subject heading into the

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



array. If the array is full, then a new array of a bigger size is created, the old one is copied into the
new one and the new pointer is then added to the array. Its definition is shown below:

void stack_array_0::push(persistent Level_ 0 * item)
{
int i = isfull();
if (4 '= -1) {
Stackptr[i].info = item;
num++;
}
else {
persistent Level_O_wrap * new_list = pnew Level_O_wrap[size+20];
for (i=0; i<size ; i++)
if (Stackptr[i].info != NULL) {
new_list[il.info = Stackptr[i].info;
}
pdelete [] Stackptr;
Stackptr = new_list;
Stackptr[size] .info = itenm;
num++;
size += 20;

¥

The method Zsfull checks if the array is full. Its definition follows:

int stack_array_0::isfull()

{
for (int i=0 ; i<size; i++)
if (Stackptr[il.info == NULL)
return i;
return -1;
}

The method search looks for a pointer to a subject heading in the array. If the pointer to the

subject heading sub0 is found in the array, its position is returned, otherwise minus one is returned.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



int stack_array_0::search(persistent Level_0 * sub0)
{
for (int i=0; i<size; i++)
if (Stackptrlil.info != NULL)
if (Stackptrlil.info == subo)
return i;

return -1;

The method remove removes a pointer to a subject heading from the array. It decrements the

number of elements and sets the pointer to NULL. Its definition follows:

void stack_array_0::remove(persistent Level_0 * sub0)

{
int i = search(sub0);
if (1> -1) {
Stackptr[i].info = NULL;
num--;

¥

Method print_all prints all the subject headings pointed by in the array. Its definition follows:

void stack_array_O::print_all()
{
for (int i=0; i<size; i++)
if (Stackptr[i].info != NULL)
printf ("%s\n",Stackptrli].Getsubject());

The class Keyword interface follows:

persistent class Keyword {
friend void trace_list_O(persistent Keyword *, SNODE *, int);
friend void trace_list_1i(persistent Keyword *, SNODE *, int);

friend void trace_list_2(persistent Keyword *, SNODE =*, int);

a1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



private:
indexable char Key{MAXi];
persistent stack_array_O * Lev_0_list;
persistent stack_array_1 * Lev_1_list;
persistent stack_array_2 * Lev_2_list;

public:
Keyword(char *s);
void Push_O(persistent Level_0 * t) { Lev_O_list->push(t); }
void Push_1i(persistent Level_1 * t) { Lev_1_list->push(t); }
void Push_2(persistent Level_2 * t) { Lev_2_list->push(t); }
int Find_O(persistent Level_0 * t) { return Lev_0_list->search(t); }
int Find_1i(persistent Level_1 * t) { return Lev_1_list->search(t); }
int Find_2(persistent Level_2 * t) { return Lev_2_list->search(t); }
void Remove_O(persistent Level O * t) { Lev_O_list-—>remove(t); }
void Remove_1i(persistent Level_1 * t) { Lev_i_list->remove(t); }
void Remove_2(persistent Level_ 2 * t) { Lev_2_list->remove(t); }
void Print_0() { Lev_0_list->print_all(); }
void Print_1() { Lev_1_list->print_all(); }
void Print_2() { Lev_2_list->print_all(); }
persistent stack_array_0 * Get_Lev_0() { return Lev_0_list; }
persistent stack_array_1 * Get_Lev_1() { return Lev_1_list; }
persistent stack_array_2 * Get_Lev_2() { return Lev_2_list; }
virtual void print() { printf(" %s\n",Key); 1}
char *Getkeyword() { return Key; }

persistent Keyword* isKey(char *str);

NOTE: Thereisa duplication of the member functions, except that each function handled different
subject level headings. That was due to an ODE error caused by assigning persistent and volatile
pointers inside the body of these functions. A template for the stack_array_0, stack_array.l and

stack_array.2 can be created if this bug is fixed.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L J [ ] [ J Level_O Subject Headings
Stack_Array_0

= ’_: > I ] I l I ] Array of Level 0 Wrappers
l \ I I Level_1 Subject Headings
KEYWORD * 4
__>
,—- _>l i l I | l | Array of Level_| Wrappers
Stack_Array_1
L J [ ] [ } Level_2 Subject Headings
i R
'_—>I I | | Array of Level_2 Wrappers
Stack_Array_2

Figure 6: Keyword Class Definition

The class control term has three friend functions, that will be used in the subject extraction
process. It also has four private data members: The Key which holds the value of the keyword, and
three pointers pointing to stack_array.0, stack-array_1 and stack_array_2 respectively. It contains
redundant functions as mentioned in the NOTE above. Its constructor Keyword copies s into the

Key value, and creates three pointers. Its definition is as given below:

Keyword: :Keyword(char *s)

{
strcpy(Key,s);
Lev_O_list = pnew stack_array_0;
Lev_1_list = pnew stack_array_i;
Lev_2_list = pnew stack_array_2;
¥

The method isKey checks if the string stris a keyword. If it is it returns a pointer to it, otherwise,

it returns zero. Its definition is as given below:

persistent Keyword* Keyword::isKey(char *str)

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



persistent Keyword *k;

for (k in Keyword) suchthat (cmp_case(k->Key,str) == 0) {
return k;
}

return 0O;

In the next section, we will describe how the thesaurus is automatically built.

4.2.5 Programs used to build the Thesaurus

Having described both procedures used in generating the subject headings hierarchy and the associa-
tion between words’ roots and their CINDI’s subject headings, we move on to describe the programs

that will store them in CINDI’s Thesaurus.

new-subject-build.cc After merging the subject levels, the subject headings are passed to a
function called build_sub2. This function will generate or distribute the Level I subject to Level 2
subject headings. The output of this function is a file having sub2 extension. The executable
file new_subject_build.cc is applied on thé outputed file producing the three level subject headings
hierarchy. Here is the algorithm used in this program:

1. Open CINDI’s Thesaurus.

2. Open the file containing the subject headings.

3. Read first subject heading into subject_0.

(a) If (subject_0 is not in CINDI’s level 0 subject headings) then Create a level_0 subject

heading in CINDI’s thesaurus having subject_0’s value.
4. Read Next subject heading from the file into subject_1.

(a) If (subject-1 is not in CINDI’s level_1 subject headings having subject_0 as its parent
subject) then Create a level_1 subject heading having subject.1’s value and subject.0 as

its parent subject in CINDI’s thesaurus.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. Read Next subject heading from the file into subject-2

(a) If (subject_2 is not in level 2 subject headings having both parent subjects subject_0 and
subject_1) then create a level_2 subject heading having subject_0 and subject_1 as upper

subjects in CINDI’s thesaurus.

6. Repeat step five until a flag indicating the end of the corresponding subject.0 and subject.l
hierarchy is reached. If the flag is reached, then we go back to step three. Repeat this procedure
until the end of the file is reached.

build-keyword-db.cc This program will construct the controlled term subject association by
reading the files that contain a list of root controlled terms and each is followed by the subject

headings where it was found. The algorithm followed is:

1. Open CINDI’s Thesaurus.

2. Open the file containing the list of controlled terms. Each controlled term is followed by a list

of its associated subject headings.
3. Read the control term from the file into key_term.

4. If (The control term is not in CINDI’s Thesaurus) then create a new control term having the

value key_term in CINDI’s Thesaurus.
5. Read next input line into a subject heading.
(a) If (the subject heading is in CINDI’s level 0 subject headings) then add this subject
heading into the level 0 subject headings associated with the key_term.

(b) If (the subject heading is in CINDI’s level_1 subject headings) then add this subject

heading into the level_l subject headings associated with the key_term.

(¢) If (the subject heading is in CINDI’s level 2 subject headings) then add this subject

heading into the level 2 subject headings associated with the key_term.

6. Repeat step five until a flag indicating the end of processing key_term’s subject association is
reached. If the flag is reached, then go back to step three. Repeat this procedure until the end
of the file is reached.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I you she he it we mine
they me her him us them yours
hers his its ours theirs their my

this that the these those who whom
which what whoever whomever | whichever whatever all

any anybody anyone anything each everybody | everyone
everything | few many nobody none one several
some somebody someone myself yourself herself himself
itself ourselves a more less also consequently
finally furthermore { hence however incidentally | indeed instead
likewise meanwhile nevertheless | next nonetheless | otherwise | still
then therefore thus forever moreover only are

is afterwards again almost alone already always
about above across after against along among
around at before behind below beneath beside
between beyond but by despite down during
except for from in inside into like
near of off on onto out outside
over past since through throughout | till to
toward under underneath | until up upon with
within without amongst anyhow anything anywhere | be
became become becomes becoming | been beforhand | being
besides can and but or nor for

50 yet after although | as because before
how if once since than that till
though until when where whether while both
either neither whether an another

Table 2: Noise (Stop) words extracted by ASHG

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Chapter 5

ASHG

5.1 Introduction

In this chapter, we present the Automatic Semantic Header Generator (ASHG) of the CINDI system.
This is an important step in building the Semantic Header. To save time for the document’s provider,
ASHG provides an initial set of subject classification and a number of components of the Semantic
Header for the document. The design goal of ASHG is to automatically build a reliable Semantic
Header, which includes classifying a document under a list of subject headings. ASHG’s scheme is
measuring both the occurrence frequency and positional weight of keywords found in the document.
Based on the selected document’s keywords, ASHG assigns a list of subject headings by matching

those keywords with the controlled terms found in the controlled term subject association.

The ASHG extracts some of the meta-information from a document and stores it in a Semantic
Header. For example, when a new document is presented to the system, fields such as document’s
title, abstract, keywords, dates, author, author’s information, size and type are extracted. Using
frequency occurrence and positional schemes, ASHG measures the significance of the words found
in the previously mentioned list. Word stemming is used in order generate a base form for each

word. The system tries to match the base forms of the words with the controlled terms found in

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the controlled term subject association. If a match was found the subject headings associated with
the controlled terms are extracted and ranked accordingly. The major steps followed by ASHG are

briefly described below:

1. Document Type Recognition: In order to apply the correct ASHG to a document, the type
of the document has to be recognised. The system currently understands HyperText Markup

Language (HTML), Latex and plain text documents.
2. File Type Validation: The user validates the file type extracted by ASHG.

3. Applying ASHG’s Extractor: The summariser corresponding to the type of document is applied

to the input document.
4. ASHG’s Document Classification: The document is assigned subject headings. It involves:

(a) Word stemming: The system applies the stemming process!, to map the words found in

the extracted fields onto a base root word.

(b) A Look up into the Controlled Term Subject dictionary.

5. Semantic Header Validation: The generated Semantic Header is presented to the user to

validate.

5.2 Document Type Recognition

When a document is submitted to the system, the system tries to recognise the type of the document
through the name conventions. If it fails the system will then examine its contents. If a failure arises
following the examination of the content, the system informs the user that the document type is
unrecognised, and the user is asked to enter the Semantic Header. Here are the two steps used in

the document type recognition process and which are similar to the Harvest’s Essence:

1. Naming conventions and heuristics.

1The stemming process will be discussed in more details in section 5.3.5

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Examining file contents in determining the file types.

The document file upon submitting is passed to a function called byname. This function checks
the document’s name extension. If the extension of the file indicates that it is an HTML, Latex
or text, then the function user_verify is called. If the naming conventions fails in recognising the

document type, the function bycontent is called.

if (document.extension == .html or .HTML or .htm) then {
The file is an html file.

Call function user_verify.

}
else if (document.extension == .tex or .TEX) then {
The file is a latex file.
Call function user_verify.
}
else if (document.extension == .doc, or .txt
or .info or .ascii) then {
The file is a text file
Call function user_verify.
}
else {
Examine the document contents by calling the function bycontent.
}

In user_verify, the user either confirms or rejects the result. If the user rejects the result, he should
choose a type from a list that is displayed. If the user confirms the document’s type as recognised,
ASHG applies the extractor corresponding to the type confirmed by the user. Otherwise, he should

choose a type and then apply ASHG.

In function éycontent, the semantics of the HTML and Latex content is exploited when attempting
to recognise the file type.

If (the file contents match the html file semantics, such as the

existence of the <HTML> tag) then {

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the file is of html type
call function user_verify }
else if (the file contents match the latex semantics, such as the
existence of the \begin{...} tag) then {
the file is of latex type
call function user_verify }
else {
Unrecognised file type, The user should select a type.

If the file type is unrecognised, meaning that it is not an HTML, Latex or text, ASHG extracts

the size of the file and the date of creation.

f ™
DOCUMENT
\— # -/
Recognition
Using Byname

Recognise using
Bycontent

User Validation |.qg——

(user_verify)

v

Apply Extractor

Figure 7: Document Type Recognition

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Applying ASHG’s Extractors

Based on the document’s type uncovered in the document type recognition step, ASHG applies
an extraction procedure. ASHG uses its understanding of HTML, Latex and text syntax docu-
ments to extract the document’s meta-information. ASHG’s HTML_extractor, LATEX eztractor,
TEXT_extractor and UNKNOWN_extractor are applied to HTML type documents, to Latezr type

documents, to Texzt type documents and to unrecognised type document respectively.

Using the document’s syntax, ASHG extracts summary information, such as the title, keywords,
dates of creation, author, author’s information, abstract and size. In both HTML and Latez docu-
ments, the author might explicitly tag some of the fields to be extracted. In case these fields were not
explicitly tagged, ASHG attempts to extract them using some heuristics. For example, extracting
the keywords in an HTML document, The HTML_extractor extracts words that are found in the
meta tag field, if they were included by the author. However, if the explicit keywords were not found
in the document, then words found in the title, abstract and other tagged words would be used to

extract an implicit list of keywords.

5.3.1 HTML_extractor

HTML is designed to specify the logical organisation of a document, with important hypertext
extensions [21]. An HTML document is designed in a way to mark selections of text as titles or
paragraphs, and then leaves the interpretation of these marked elements up to the browser. The
HTML _eztractor exploits this mark-up in order to extract the meta-information. HTML instructions
divide the text of a document into blocks called elements. These can be divided into two broad

categories:
1. the HEAD part, which defines information about the document, such as title, and

2. the BODY part, which defines how the body of the document is to be displayed by the browser.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



==
Y

Document Type Recognition

Extract Author

v

Extract Dates

Y

Extract Size

v

Extract Title

v

Extract Abstract

!

Extract Other
Tagged Words

Keywords Are
n Docume!

Generate A list of

implied Keywords|

Extract Explicit
Keywords

v

Generate a list of
Words leading to
Subject Headings

Figure 8: ASHG’s extraction steps

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ASHG exploits both the HEAD’s TITLE mark-up element, which is mandatory, and the HEAD’s
META mark-up element, which is a general element for document meta-information. The META
mark-up element contains information such as date of creation, and date of expiry. It can also
contain Arbitrary User-Specified Information, which includes information such as keywords, name
of the author, and a summary of the document. In case these mark-up elements are not found in
the HTML document, ASHG extracts the meta-information by applying some heuristics that will
exploit the BODY mark-up elements such as the Hn headings, P paragraphs, ADDRESS Address,

Blockquote, Lists and text emphasis.

HTML_eztractor extracts the title, explicitly stated keywords, language (English), author(s), dates
(Created, Expiry), size of the file, and the abstract from an HTML document. Generating an implicit
list of keywords will be discussed in sub-section 5.3.5, and the subject headings classification scheme

is described in section 5.4. Both procedures are standard for all extractors.

Extracting the author from an HTML document

The HTML_extractor extracts the author from the META mark-up element. For instance, if the

HTML document contains <META name = “author” content = “Sami Haddad” >, the HTM L_exziractor

extracts Sami Haddad as the author of the document.

Extracting dates from an HTML document

Document’s creation and expiry dates could be found in the META mark-up element, for example
<META name = “Created” content = “18/03/98” >. The HTML_eztractor extracts both the date of
creation and date of expiry. If it fails to locate them in the META mark-up element, it uses the stat
and GM-time commands to extract the date of creation. stal uniz command contains information
about the file such as File size in bytes, Time of last access, Time of last data modification and Time

of last file status change. GM-time uniz command converts the time to Coordinated Universal Time

(UTC), which is what the UNIX system uses internally.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Extracting the size of the HTML document

Using the stat unix command, the size of the file can be extracted.

Extracting the title from an HTML document

The title, which is found in between <title> and </title> tags, is extracted. For example, if the
HTML document contains <title> Cz'nd.i System analysis </title>, HTML _eztractor extracts Cindi
System analysis as the document’s title. If the title tags were not found in the HTML document,
then the HTML_eztractor will extract the first heading found in between <h1> and </h1> tags. If

it fails, then the first sentence is extracted after generating an HTML tag-free document.

Extracting the abstract from an HTML document

The HTML_ eziractor attempts first to extract the content from the META abstract mark-up el-
ement. If it fails to find the abstract in the META mark-up element, it extracts the paragraph
headed by the tagged word abstract. If it fails to locate an abstract heading, it applies an auto-
matic abstracting method. This method, which is similar to Luhn’s automatic abstracting method
described in chapter 3, attempts to extract a section or paragraph that is headed by introduction.
Based on the number of significant root words in the sentence, a numerical measure is developed for
a sentence. The automatic abstracting includes the highest measured sentences in the abstract. If
it fails, the H TML_eztractor extracts the first paragraph after removing the HTML tags and applies

the automatic abstracting method, described above, on this paragraph.

Extracting other tagged words from an HTML document

The HTML._exziractor extracts a list of tagged words. For example, if the HTML document contains
the meta tags <b> Database </b>, the HTML_eztractorincludes Database in the list of other tagged
words. This list of words is used in generating an implied list of keywords and in generating a list

of significant words used in the document classification scheme. Both processes will be described in

subsection: 5.3.5.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Extracting explicitly stated keywords from an HTML document

The HTML_eztractor attempts first to extract the keywords from the META mark-up element. If it
fails, it extracts the list of keywords following the tagged word, keywords. For example, if the HTML
document contains the meta tags <b>Keywords</b> :Bibliographic record, search engineering ,
analysing search, Content description, Database Systems, Ezpert System, Indering applications,

Searching, URC <p>, the HTML_eziractor extracts these as the document’s keywords.

5.3.2 Latex_extractor

LaTeX is a TeX macro package, originally written by Leslie Lamport [31], that provides an easy
way to use the TeX document processing system. LaTeX allows mark-up to describe the structure
of a document, so that the user need not think about presentation. By using document classes and
add-on packages, the same document can be produced in a variety of different layouts. LATEX is a
macro package which enables authors to typeset and print their work at the highest typographical

quality, using a predefined, professional layout.

Latex commands describe the structure of the document. There is a list of things that should be

realized about these commands:
1. All Latex commands consist of a backslash followed by one or more characters.
2. Latex commands should be typed using the correct mixture of upper and lower case letters.

3. Some commands are placed within the text. These are used to switch on and off things, like

different type styles.
4. There are other commands that look like \command{text}

5. When a command’s name is made up entirely of letters, its end is marked by something that

isn’t a letter. The mark, for instance, could be a space.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The LATEX eztractor exploits the use of mark-up elements of specifically the Latex article style
to extract the meta-information. It extracts the title, explicitly stated keywords, language (English),
author(s), dates (Created, Expiry), size of the file, and the abstract from a Latez document. Gen-
erating both implicit keywords and a list of subject headings for a document will be described in a

later section, since they are a standard procedure for all extractors.

Extracting the author from a Latex document

The \author{names} command declares the author(s), where the name(s) is a list of authors sep-
arated by \end commands. The \\ is used to seperate lines within a single author’s entry. For
example, to give the author’s institution or address. If the following was in the latex document:
\author{Bipin C. DESAI \\
Department of Computer Science,\\

Concordia

University, \\
Montreal, H3G 1M8, CANADA\\}

LATEX eztractor extracts Bipin C. DESAIT as the author’s name and Depariment of Computer

Science, Concordia University, Montreal, H3G 1M8, CANADA as the author’s address.

Extracting dates from a Latex document

The \date{text} declares text to be the document’s date. For example, if “\date{18/04/98}" was
found in the Latex document, LATEX eztractor extracts 18/04/98 as the document’s date. If no

\date command is found in the Latex document, LATEX eziractor uses the stat and GM-time

commands to extract the date of creation.

Extracting the size of the Latex document

Using the stat unix command, the size of the file can be extracted.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Extracting the title from a Latex document

The \title{text} command declares text to be the title. The LATEX_ eztractorexploits the title mark-
up element to extract the title. For instance, if the latex document contains \title{CINDI system
analysis}, LATEX eztractor extracts CINDI system analysis as the title. If it fails, LATEX extracior

exploits the following mark-up element:

\begin{titlepage}
text
\end{titlepage}

It extracts the first sentence found in the fezt. If it fails, it extracts the text marked up by
huge, or large. It can exploit the presence of \begin{huge} tezt \end{huge} or \huge{tezt}. If it
fails, it exploits the presence of \begin{Large} tezt \end{Large} or \Large{text}. If none of the
above mark-up elements were found in the document, LATEX_eztractor filters out all latex mark-up

elements and extracts the first sentence as the document’s title.

Extracting the abstract from Latex document

A latex document might contain \begin{ abstract} text \end{ abstract}. If it does, the LATEX extractor
extracts the tert as the document’s abstract. Otherwise, it extracts the sections which are headed
by the word abstract. For example, if \section{Abstract} is found in the document, the paragraph

that follows is extracted.

However, if it fails, it extracts the paragraph that follows \huge{Abstract}, \large{Absiract},
\bf{ Abstract}, or \it{Abstract}. If none of these are found, the automatic abstracting method is
applied. This method, which is similar to Luhn’s automatic abstracting method, is described in
chapter 3 and in the HTML_extractor. If the automatic abstracting method fails, the first marked

up paragraph is extracted, otherwise, all the latex mark-ups are removed and the first paragraph is

extracted as the document’s abstract.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Extracting other tagged words from a latex document

The LATEX eztractorextracts a list of other marked up words. It uses the sectioning commands and
the three typefaces latex commands: \em (Emphatic), \bf (Boldface) and \it (Italic) to extract the
marked up words. The extracted words will be used in the generation of an implicit list of keywords
and the generation of a list of significant words used in the document’s classification scheme. This
process of generating an implicit list of keywords and a list of significant words is described in

subsection 5.3.5. Here are the Latex sectioning commands:
e \part
e \chapter
e \section
e \subsection
e \subsubsection
e \paragraph

e \subparagraph

Extracting explicitly stated keywords from a latex document

LATEX _extractor exploits three typefaces latex commands: \em (Emphatic), \bf (Boldface) and \it
(Ttalic). These commands are used inside a pair of braces to limit the amount of text that they
affect. For instance, if the following was in the latex document:

{\bf Keywords: } Information retrieval, Modelling, meia-dalta, cataloguing. searching, discovery,
information resources, WWW, Internet, resource discovery \\

, the LATEX eziractor extracts the words as the document’s keywords.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3.3 Text_extractor

Perhaps one of the most challenging tasks in information extraction is to extract and manipulate
information found in plain text documents. Since these documents do not contain tags or mark-up
elements, the TEXT_eztractor relies heavily on heuristics in extracting the title, explicitly stated
keywords, language (English), author(s), dates (Created, Expiry), size of the file, and the abstract
from a Latez document. Generating both implicit keywords and a list of subject headings for a

document will be described in a later section.

Extracting the author from a plain text document

The TEXT_eziractor looks for a pattern such as written by, edited by or revised by. If it finds one of

them, it extracts the text following it and stores it as the author’s Semantic Header field.

Extracting dates from a plain text document

The TEXT_eztractor uses the stat and GM-time commands on the document file to extract the date

of creation.

Extracting the size of the plain text document

Using the stat unix command, the size of the file can be extracted.

Extracting the title from a plain text document

When presented with a plain text document, the TEXT eziractor extracts the first sentence from
the document. This sentence is used as the document’s title. If it fails, it generates a list of sentences
by extracting all sentences found in the first, second and last paragraph and by extracting the first
sentence of all other paragraphs. Each sentence is divided into its constituent words. After dropping

all English Noise or Stop words, the remaining words are stemmed.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Each sentence is given a weight according to the frequencies occurrences’ sum of the stemmed
words found in the sentence. The TEXT.extracior selects the highest weighted sentence as the

document’s title.

Extracting the abstract from plain text document

The TEXT_extractorlooks for the pattern, abstract, and extracts the first paragraph followingit. If
it fails, the automatic abstracting method is applied on the document’s introduction . If it fails to
construct an abstract, TEXT_extractor applies the automatic abstracting method on the sentences
found in the first, second and last paragraph and on the first sentence of all other paragraphs. The
sentences are divided into their constituent words. Dropping all English Noise words, the remaining
words are stemmed. The extracted sentences are weighted according to the frequency occurrence of
the sternmed words. The TEXT_eztractor will construct the document’s abstract by extracting the

highest weighted sentences.

Extracting other words from a plain text document

The TEXT extractor extracts the words found in the first two paragraphs, the last paragraph and in
the first sentence of each other paragraph. After removing the English Noise words, a list of stemmed
words is derived. The derived words will be used in the generation of an implicit list of keywords

and the generation of a list of significant words used in the document’s classification scheme.

Extracting explicitly stated keywords from a plain text document

The TEXT ezxiractor extracts the text following the word keyword as the document’s keywords, until

the TEXT _eztractor reaches an introduction heading or a new paragraph.

5.3.4 Unknown_extractor

ASHG supports HTML, Later and Tezt documents; however, if the document is not any of these

types, ASHG applies the UNKNOWN_extractor. It extracts the size of the document and the creation

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



date. It is up to the document’s author or provider to enter the Semantic Header’s information.

5.3.5 Generating an implicit list of keywords and words used in Docu-
ment classification

ASHG generates an implicit list of keywords in case explicit keywords were not found in the doc-

ument. It derives a list of most significant words, which is used in the document classification

scheme.

In case keywords were not found in the document, the system derives a list of words from the
words found in the title, abstract, and other tagged fields. This list of derived words will also be
used in classifying the document. However, if the keywords were explicitly stated in the document,
then ASHG will generate a list of words from the words found in the title, abstract, keywords and

other tagged fields. This list is used to assign a list of subject headings for the document.

Generating both lists of words relies on the stemming process that will map the words into their
root words, the stemmed word frequency of occurrence and the word location in the document. It
uses the following algorithm in generating the list of implicit keywords, in case the keywords were

not found in the document, and the words used in the classification scheme:-

1. Extract the title, abstract and other tagged fields. If the document wasn’t tagged such as in a
plain text document, words found in the first two and last paragraphs and in the first sentence

of each paragraph are selected. Keywords are extracted if they were found in the document.

2. English Noise words constitute usually around 30 to 50 per-cent of a document. The Infor-

mation Retrieval community calls them the Stop List. These words are dropped from the

extracted fields.

3. The remaining words are sent to the stemming process. This process will remove the words’
suffixes and prefixes. For example, the words: cycled, cycler, cycling and cycles are stemmed
to the root term, cycle. The aim of the stemming process is to generate base word class, which

include all the forms that could be generated from it.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. Because the terms are not equally useful for content representation, it is important to introduce
a term weighting system that assigns high weights for important terms and low weight for the
less important terms [55]. Therefore, the weights constitute the importance of a word. The
system assigns weights to both lists of root words. The weight assignment uses the following

scheme:

(a) If the word appears in the explicitly stated keywords, it is assigned a weight of five 2.
Since authors explicitly state the keywords to convey some important terms, which their
document covers, it is assigned the highest weight. For example, if the word device is

found in the list of explicitly stated keywords, the word device is assigned a weight of five.

(b) Usually, words found in the abstract are the second most important words, because this
is where the author tries to convey his/her idea. Therefore, words found in the abstract
are the second most significant and they convey the idea of the article more than any
words found in other locations [51]. If the word appears in the abstract, it is assigned a
weight of four.

(c) If the word appears in the title, it is assigned a weight of three. For example, if the word

compute is found in the title, it is assigned a weight of three.

(d) If the word appears in the other tagged words, it is assigned a weight of two.

5. Each numeric weight is a class by itself defining the words’ location. The system has the

following classes:

(a) A class weight of two defines the OTHER WORDS class. This class contains the terms
found in only the OTHER WORDS field.

(b) A class weight of three defines the TITLE class. The class three contains all the terms
found only in the title field.

(¢) The class weight four contains all the terms found only in the abstract field. Therefore a

class weight of four defines the ABSTRACT class.

(d) A class weight of five includes all the terms found in either the keywords’ field or in the

title and other words fields.

(e) A class weight of six includes all the terms found in both the abstract field and the other
words field.

(f) A class weight of seven includes all the terms found in either the keyword and other words

fields or the abstract and title fields.

21f the keywords are stated, then they will be used in addition to the other weight classes in determining the -
subject classification for the document '

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(g) A class weight of eight contains all the terms found in keyword and title fields. For
example, if the word compute appears in both the title and explicitly stated keywords, it
is assigned a weight of eight. The word compute will be an element of the class weight of
eight.

(h) A class weight of nine contains all the terms found in either the abstract, title and other

words fields, or abstract and keywords fields.

(i) A class weight of ten contains all the terms found in the other words, title and keywords

fields.

(J) A class weight of eleven contains all the terms found in the other words, abstract and

keywords fields.

(k) A class weight of twelve contains all the terms found in the title, abstract and keywords

fields.

(1) A class weight of fourteen contains all the terms found in the other words, title, abstract

and keywords fields.

A term appearing in other words field is less important than the one appearing in the abstract
field. Furthermore, a term appearing in both title and other words fields is less significant
than the one appearing in the keywords, abstract and title field. In a high class weight, we
are interested in extracting more terms than in lower class weights. Thus, we tend to extract
more terms from the high weighted classes. To limit the number of extracted terms, we use

the term’s frequency of occurrence.

Significant terms have the highest frequency of occurrence in the low weighted classes. As
the class weight increases, more of its terms are regarded as significant. To include more
significant terms, the domain of the terms’ frequencies is expanded. The more is the class

weight, the wider is the domain frequency of the significant terms.
For each class, we set the maximum class frequency to be the maximum frequency of oc-
currence of a term found in that class. For instance, if, in class four, we had three terms

having two, four and six as frequencies, the system would select six as the maximum class four

frequency.

The words’ frequencies are compared with their corresponding maximum class frequency.

For low weighted classes such as two and three, significant terms have the maximum class

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



frequencies. Thus, limiting the number of significant terms. However, all terms found in class

eight and more are significant regardless of their frequency of occurrence.

[ Term Weight | Term Frequency |
2 Maximum Class 2 frequency

3 Maximum Class 3 frequency

4 Greater or equal to Maximum Class 4 frequency minus 1
5 Greater or equal to Maximum Class 5 frequency minus 1
6

7

8

Greater or equal to Maximum Class 6 frequency minus 2
Greater or equal to Maximum Class 7 frequency minus 3
or more All

Table 3: Weight and Frequency numbers used in extracting terms

6. Two lists of words will be generated. The first one containing only the root words or controlled
terms found in CINDI’s thesaurus. This list of controlled terms is used in the document’s
subject classification scheme. The second list contains the most significant root words not

found in CINDI’s thesaurus.

7. If no keywords were found in the document, ASHG extracts words having a term weight more
than four and their corresponding frequencies of occurrence is the same as the ones tabulated.

These words are the document’s keywords.

8. In generating a list of controlled terms used to classify the document, terms having weight of
two or more are extracted. The extracted words should have the frequencies of occurrence as

the ones tabulated.

ASHG’s Stemming Process

Stemming consists of processing a word so that only its stem or root form is left. In Okapi [T4],
indexed keywords are held in stemmed form, and so are query words entered by the user. This
provides a better likelihood of matching relevant documents. In the Okapi [74] system, a stemming
algorithm developed by Porter [44] at Cambridge is used. This algorithm uses weak stemming to
remove common plural endings and other grammatical suffixes like -ing and -ed and implements

strong stemming to remove derivational suffixes like -ent, -ence, and -ision.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Many searchers use right hand truncation to find different variations of a search term that is of
interest. For example, rather than search for ultrasonic, ultrasonically or ultrasonics and cleaner,
cleaning, cleaners, cleaned or cleanable, a searcher will right hand truncate the terms and retrieve
all terms sharing the specified root ultrasonic and clean. The problem with right hand truncation

is that it indiscriminately adds words to the query [75].

For example, if a searcher were to search for the truncated form of the word cover, the searcher
would not only retrieve instances of the terms covers, covering and covered but also the terms covert,
coverall, coversheet and coverage. QPAT-US [75] helps you avoid extraneous right hand truncation
terms by automatically performing a process called stemming. First, QPAT-US evaluates your terms
for common suffixes that indicate plurality, verb tense, etc. If QPAT-US discovers these suffixes, it
will strip them to find the root form of the term. For instance, if QPAT-US finds the term covering
it will strip the suffix to obtain the root word of cover. Next, QPAT-US takes the root form of your
search terms and, using sophisticated linguistic rules, creates a set of word variants. If your original

term is covering, QPAT-US will also search for cover, covers and covered.

Two types of stemming are available in various versions of WAIS: Porter and Plural. Plural
stemming attempts to identify and index the singular form of a term. Porter stemming attempts
to identify and index the word stem. If a word and its stem are different, only the word stem is

indexed.

ASHG's stemming process implements the removal of both suffixes and prefixes of a given word
in order to get the root of the word. For example, applying the stemming process on the words sim-

ulation and analogies, the words simulate and analogy are generated as their root words respectively.

ASHG stores the root forms of the words.

Suppose the word impressionists is in a document for which meta-information is to be extracted.
Without stemming, this would match only the keyword impressionists and not the singular form.

Now suppose that the word impressionist was in CINDI’s list of controlled terms, then that document

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



will miss that term and will not have it as a keyword. Following stemming, documents having the
word impressionistic and impressionism will match the root term that is found in CINDI’s list of

controlled terms.

We have mainly used the spell unix command in our system in extracting the root of a word. The
spell command collects words from an input file and looks them up in a dictionary list. Words that
neither occur among nor are derivable (by applying certain inflections, prefixes, and/or suffixes)
from words in the spelling list are printed on the standard output. Two options were used in our

system:

1. -v All words not literally in the spelling list are printed, and plausible derivations from the

words in the spelling list are indicated.
2. -z Every plausible stem is displayed, one per line, with = preceding each word.
The steps of the ASHG stemming process are:
1. Using the sort unix command, sort the input words.
2. Apply the unig unix command to filter out duplicate words.

3. Apply the spell command with the -z option. Thus, all the plausible stems are stored in an

output file.

4. Apply the spell command with the -v option. Thus, all words not found in the spelling list are

stored.
5. Create a file which contains the words found in step 3 but not in step 4.

6. Apply the spell command with the -v option to each word found in the file that resulted from

the previous step. If the resulting output is empty, this means that this root word is found.

We applied the ASHG’s stemming process and Porter’s algorithm to a set of words and compared

the resulting root words. The results are shown in the following table:

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



| Words | Porter’s algorithm | ASHG algorithm |
Adventure adventur adventure
games game game
Computer comput compute
aided aid aide
engineering engine engineer
Transcription transcript transcription
Algorithms algorithm algorithm
Animation animat animate
construction construct construct
industries industry industry
Industrial industry industry
analogies analogy analogy
Mathematical mathemat mathematic
models model model
Simulation simul simulate
Civilization civil civil
COMPLEXITY | complex complex
assisted assist assist
Authoring author author
graphics graphic graphic
programmers programm programmer
programming program programming
Computerized computer compute
Performance perform performance
Coding code code
Utilities utility utility
Optimization optimiz optimize
Combinatorics combinator combinatoric
Representation represent presentation

Table 4:

The word stem results after using Porter and ASHG’s Algorithm

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 ASHG’s Document Subject Headings Classification scheme

An important step in constructing the semantic header is to automatically assign subject headings
to the documents. The title, explicitly stated keywords, and abstract are not enough by themselves
to convey the ideas or subjects of the document. Since the author tries to convey or to summarise
his ideas in the previously mentioned fields, there is a need to use all English none noise words found
in those fields. To assign the subject headings, ASHG uses the resulting list of significant words
generated from the previous section and CINDI'’s controlled term subject association. The subject
heading classification scheme relies on passing weights from the significant terms to their associated

subjects, and selecting the highest weighted subject headings.

5.4.1 The Algorithm followed

Having the keywords, title words, abstract words and other tagged words, will help us select the

most appropriate subjects for a given document. The following algorithm is used:-

1. Three lists of subject headings are to be constructed. The list of Level -0 subject headings, the
list of Level_1 subject headings and the list of Level 2 subject headings.

2. For each term found in both CINDI’s controlled terms and the generated list of words, the
system traces the controlled term’s attached list of subjects (list of level0, levell and level?)

headings, and adds the subject headings to their corresponding list of possible subject headings.

3. Weights are also assigned to the subject hierarchies. The weight for a subject is given according
to where the term matching its controlled term was found. A subject heading having a term
or set of terms occuring in both title and abstract, for instance, gets a weight of seven. The

matched terms’ weights are passed to their subject headings.

4. The system extracts Level .2, Level_1 and Level_0 subject headings having the highest weights

from the three lists of possible subject headings.
5. After building the three lists for the three level subject headings, the system :

(a) selects the subjects using the bottom-up scheme.

(b) Having selected the highest weighted level 2 subject headings, the system derives their

level 1 parent subject headings.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(¢) An intersection is made between the derived levelI subject headings and the list of
the highest weighted level_! subject headings. The common level_ I subjects are the

document’s level.I subject headings.

(d) The system uses the same procedure in selecting level_0 subject headings.

5.5 Semantic Header Validation

Once the process of extracting the meta-information is terminated, the semantic header is displayed
for the source provider to modify, add or remove some of the attributes. Once the provider finishes,

the semantic header can be stored in the CINDI database.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6

Analysis of ASHG’s Results

In this chapter, we illustrate how the ASHG system extracts the meta-information from the HTML,
Latex and text documents, and we demonstrate ASHG’s automatic subject headings classification.
For each of these document types, we apply ASHG and show the results. We compare the subject
classification generated by ASHG with that of INSPEC for the same set of documents. We also
compare the results with what the papers’ authors would regard as good subject classifications and

poor ones.

6.1 Reduction of Controlled Terms

Salton et al [55] introduces the term weighting system that assigns high weights to terms deemed
important and lower weights to the less important terms. The term weighting system favours terms

with high frequency in particular documents but with a low frequency overall in the collection.

ASHG’s controlled terms favours the terms that have low frequency in the ASHG’s subject head-
ings over the terms having high frequency. Controlled terms having high frequency are dropped from
the ASHG?s list of controlled terms. Terms having lower frequency distinguish the subject headings

associated for the document.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The controlled term system occurs two hundred and eleven times in the ASHG’s subject headings,
which is the highest frequency control term. Therefore, it is dropped from the ASHG’s list of
controlled terms. The following table shows the words that are dropped and their corresponding

frequencies.

| Words | Frequency |
system 211
power 115
design 106
electric 100
circuit 96
application 93
language 87
device 84
measure 83
general 72
manage 71
information 70
analysis 69
miscellaneous | 58
other 47

Table 5: Words Dropped from the list of controlled terms

Other control terms such as section, two, three, function, and method were dropped due to their

ambiguity.

6.2 Experiments

The experiments described here are designed to test the accuracy of the generated index and the
subject headings classification results. After applying the ASHG on a set of documents, the gen-
erated index fields such as title, keywords, abstract and author are compared with those that are
found in the document. The ASHG’s automatic subject headings classification results are compared
with the INSPEC’s classification and with what the papers’ authors would regard as good subject

classifications and poor ones.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The experiments were conducted on thirty three documents. The titles of these documents can
be viewed in appendix A. These documents dealt with computer science and electrical engineering
subjects. ASHG was able to extract all the explicitly stated fields such as title, abstract, keywords,
and author’s information with a hundred percent accuracy. If the abstract was not explicitly stated,
ASHG was able to automatically generate an abstract that would describe the paper. However,
ASHG’s implicit keyword extraction generated a list of words which included some words that are

insignificant. These insignificant words in turn lead to the diversion in subject classification.

We have consulted the papers’ authors on the ASHG s subject classification results. Their response
was divided into three categories: good, OK/Not sure and poor subject hierarchy selection. Good
subject hierarchy selection implied that the authors would have chosen them as subject hierarchies
for the documents. OK/Not sure subject hierarchy selection implied that the authors doubt the
results and they would not choose them. Finally, the poor subject hierarchy selection implied that

the selected subject hierarchies described another different subject.

We compared the ASHG'’s subject classification results against the INSPEC’s classification done
by expert cataloguers and thesaurus. Some of the ASHG’s subject classification had different words
than INSPEC’s even though they described the same subject. That was due to the fact that our

computer science subject classification was built from ACM and not from INSPEC.

After conducting the tests over the three document types, ASHG’s average percentage accuracy
was 21.92%. Since our system was only based on the frequency and location of words in a document
to determine the document’s keywords and subject classification, it has missed the importance of
the word senses and the relationship between words in a sentence. Our simplistic system did not

capture the concepts behind the documents, or the ideas that the author is trying to convey.

Our results support the idea that word frequency and location are not enough in information

retrieval. However, since the ASHG’s result will be used as a starting point by the author, he/she

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Number of Accuracy
HTML Subject Headings Author’s Opinion A: Author | OK/Good’s
Document | generated by ASHG | Good | OK/Not Sure | Poor | I: INSPEC Accuracy
D1 6 4 2 0 66.66% (A) 100%
16.6% (1)
D2 7 4 1 2 57.14% (A) 71.42%
D3 8 6 0 2 75% (A) 75%
D4 9 3 4 2 33.33% (A) 77.77%
D5 7 0 3 4 0 (A) 42.85%
D6 6 0 2 4 0 (A) 33.33%
D7 4 1 3 0 25% (A) 100%
D9 6 0 3 3 0(A) 50%
16.66% (I)
D10 5 0 4 1 0 (A) 80%
D11 3 0 1 2 0 (A) 33.33%
D12 5 1 4 0 20% (A) 100%
20% (1)
D13 5 1 3 1 20% (A) 80%
D14 5 0 3 2 0 (A) 60%
Di5 6 1 4 1 16.66% (A) 83.33%
16.66% (I)
D17 3 0 (I)
D18 3 1 1 1 33.33% (A) 66.66%
33.33% (I)
D19 7 4 1 2 57.14% (A) 71.42%
42.8% (1)
D20 4 1 0 3 25% (A) 25%
D21 5 0 2 3 0(A) 40%
20% (I)
D22 4 25% (1)
D23 6 16.66% (1)
D24 4 25% (1)
D25 4 25% (1)
D26 3 0% (I)
D27 3 66.66% (1)
D28 26 7.69% (1)
D29 5 0 (I)
D30 3 0% (1)
D31 5 20% (1)
D32 5 40% (1)
Averages 22.2% 66.11%

Table 6: Summary of ASHG’s HTML test results against the authors and INSPEC’s results

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Number of Accuracy
Latex Subject Headings Author’s Opinion A: Author | OK/Good’s
Document | generated by ASHG | Good | OK/Not Sure | Poor | I: INSPEC Accuracy
D1 5 3 0 40% (A) 100%
16.6% (I)
D2 5 4 0 1 66.66% (A) 66.66%
D3 4 1 0 3 25% (A) 25%
D4 10 from 11 4 4 2 40% (A) 80%
D5 6 0 2 4 0 (A) 33.33%
D6 4 0 2 2 0(A) 50%
D7 4 0 2 2 0 (A) 50%
D8 5 1 2 2 20% (A) 60%
D9 4 from 6 0 2 2 0 (A) 50%
25% (1)
D10 4 0 4 0 0 (A) 100%
D11 5 1 1 3 20% (A) 40%
D12 5 0 5 0 0 (A) 100%
20% (1)
D13 6 2 3 1 33.33% (A) 83.33%
D14 4 0 4 0 0 (A) 100%
D15 5 1 4 0 20% (A) 100%
20% (I)
D16 4 1 2 1 25% (A) 75%
D17 3 0
D18 3 1 1 1 33.33% (A) 66.66%
66.66% (I)
D19 3 1 0 2 50% (A) 50%
50% (I)
D20 4 1 0 3 25% (A) 25%
D21 3 0 0 3 0 (A) 0
33.33% (1)
D22 7 28.57% (I)
D23 7 14.28% (I)
D24 4 0(I)
D25 24 25% (1)
D26 4 0% (I)
D27 3 66.66% (I)
D28 26 50% (I)
D29 5 0 (1)
D30 4 50% (I)
D31 25 4% (I)
D32 4 25% (1)
Averages 22.91% 62.75%

Table 7: Summary of ASHG’s Latex test results against the authors and INSPEC’s results

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Number of Accuracy
Text Subject Headings Author’s Opinion A: Author | OK/Good’s
Document | generated by ASHG [ Good | OK/Not Sure | Poor | I: INSPEC Accuracy
D1 5 2 3 0 40% (A) 100%
20% (1)
D2 17 1 3 13 5.88% (A) 23.52%
D3 8 6 0 2 75% (A) 75%
D4 4 1 2 1 25% (A) 75%
D5 7 0 3 4 0(A) 42.87%
D6 6 0 2 4 0(4A) 33.33%
D7 5 1 3 1 20% (A) 80%
D8 5 2 2 1 40% (A) 80%
DY 4 0 2 2 0(A) 50%
0(I)
D10 7 0 2 5 0(A) 28.57%
D11 9 4 3 2 44.44% (A) 77.77%
D12 5 1 4 0 20% (A) 100%
20% (1)
D13 5 2 2 1 40% (A) 80%
D14 7 0 3 4 0(A) 42.85%
D15 4 1 3 0 25% (A) 100%
20% (1)
D16 7 3 1 3 42.85% (A) 57.14%
D17 3 0 (I)
D18 3 1 0 2 33.33% (A) 33.33%
33.33% (I)
D19 5 1 1 3 20% (A) 40%
20% (I)
D20 5 1 0 4 20% (A) 20%
D21 3 0 0 3 0 (A) 0
0% (I)
D22 4 50% (I)
D23 8 12.5% (I)
D24 4 25% (1)
D25 28 7.14% (1)
D26 4 25% (I)
D27 44 25% (I)
D28 4 0(I)
D29 18 27.77% (1)
D30 14 14.28% (1)
D31 28 14.28% (1)
D32 5 40% (I)
Averages 20.66% 56.97%

Table 8: Summary of ASHG’s Text test results against the authors and INSPEC’s results

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




has the opportunity to correct the errors and include fields of the Semantic Header not given before

registering it. Further work is required in refining the subject classification.

6.2.1 Sample Results

In this section, we will show some of the indexes generated by ASHG.

<semhdrB>

<useridB> <useridE>

<passwordB> <passwordE>

<titleB> Resource Discovery: Modelling, Cataloguing and Searching <titleE>

<alttitleB> <alttitleE>

<subjectB>

<generalB> Computer Science <generalE>

<subleveliB> Software <sublevellE>

<sublevel2B> Computer programs and softwares <sublevel2E>

<generalB> Computer Science <generalE>

<subleveliB> Information storage and retrieval <sublevellE>

<sublevel2B> Information search and retrieval <sublevel2E>

<generalB> Computer Science <generalE>

<subleveliB> Information storage and retrieval <sublevellE>

<sublevel2B> Query formulation in information search and retrieval <sublevel2E>

<generalB> Computer Science <generalE>

<sublevellB> Information storage and retrieval <sublevellE>

<sublevel2B> Relevance feedback in information search and retrieval <sublevel2E>

<generalB> Computer Science <generalE>

<sublevellB> Information storage and retrieval <sublevellE>

<sublevel2B> Retrieval models in information search and retrieval <sublevel2E>

<generalB> Computer Sciemce <generalE>

<sublevellB> Information storage and retrieval <sublevellE>

<sublevel2B> Information search and retrieval process <sublevel2E>

<subjectE>

<languageB> English <languageE>

<char-setB> <char-setE>

<authorB>

<aroleB> Author <aroleE>

<anameB> Bipin C. DESAI, ~~ "“Rajjan SHINGHAL <anameE>

<aorgB> <aorgk>

<aaddressB> Department of Computer Science, Concordia University, Montreal,
H3G 1M8, CANADA <aaddressE>

<aphoneB> <aphoneE>

<afaxB> <afaxE>

<aemailB> <aemailE>

<authorE>

<keywordB> Information retrieval , Modelling , meta-data , cataloguing
searching , discovery , information resources , WWW , Intermet ,
resource discovery <keywordE>

<identifierB>

<domain3B> <domain3E>

<value3B> <value3E>

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<identifierE>

<datesB>

<createdB> 1998/4/18 <createdE>

<expiryB> <expiryE>

<datesE>

<versionB> <versionE>

<spversionB> <spversionE>

<classificationB>

<domain4B> <domain4E>

<value4B> <value4E>

<classificationE>

<coverageB>

<domainbB> <domainSE>

<valueb5B> <value5E>

<coverageE>

<system-requirementsB>

<componentB> <componentE>

<exiganceB> <exiganceE>

<system-requirementsE>

<genreB>

<formB> <formE>

<sizeB> 42301 <sizeE>

<genreE>

<source-referenceB>

<relationB> <relationE>

<domain-identifierB> <domain-identifierE>

<source-referenceE>

<costB> <costE>

<abstractB>

Existing search systems exhibit uneven selectivity when used in seeking
information resources on the Intermet. This problem has prompted a number of
researchers to turn their attention to the development and implementation of
meta-data models for use in indexing and searching on the WWW and Internet.
In this paper, we present our re-sults of a simple query on a number of
existing search systems and then discuss a pro-posed meta—data structure.
Modelling the expertise of librarians for cataloguing, user entry and search
using a rule-based system is also discussed.

<abstractE>

<annotationB>

<annotationE>

<semhdrE>

<EOF>

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<semhdrB>

<useridB> <useridE>

<passwordB> <passwordE>

<titleB> On the Accuracy of the UTD for the Scattering by a Cylinder <titleE>

<alttitleB> <alttitleE>

<subjectB>

<generalB> Electrical Engineering <generalE>

<subleveliB> Communications <sublevellE>

<sublevel2B> Radar equipment, systems and applications <sublevel2E>

<generalB> Electrical Engineering <generalE>

<sublevellB> Electromagnetic waves, antennas and propagation
fields <sublevellE>

<sublevel2B> Electromagnetic wave propagation <sublevel2E>

<subjectE>

<languageB> English <languageE>

<char-setB> <char-setE>

<authorB>

<aroleB> Author <aroleE>

<anameB> Robert Paknys <anameE>

<aorgB> <aorgk>

<aaddressB> <aaddressE>

<aphoneB> <aphoneE>

<afaxB> <afaxE>

<aemailB> <aemailE>

<authorE>
<keywordB> scat , case <keywordE>
<identifierB>

<domain3B> FTP <domain3E>
<value3B> <value3E>
<identifierE>

<datesB>

<createdB> 1998/5/21 <createdE>
<expiryB> <expiryE>
<datesE>

<versionB> <versionE>
<spversionB> <spversionE>
<classificationB>
<domain4B> <domain4E>
<value4B> <value4E>
<classificationE>
<coverageB>

<domainbB> <domainbE>
<value5B> <valueSE>
<coverageE>
<system-requirementsB>
<componentB> <componentE>
<exiganceB> <exiganceE>
<system-requirementsE>
<genreB>

<formB> <formE>

<sizeB> 18870 <sizeE>
<genreE>

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<source-referenceB>

<relationB> <relationE>

<domain~identifierB> <domain-identifierE>

<source-referenceE>

<costB> <costE>

<abstractB>

The UTD formulation for the scattering by a cylinder is valid for

antennas that are removed from the cylinder surface. The usual guideline is
that reliable results can be obtained for antennas that are about

lambda4 or more away from the surface. By exploring a few cases, we

show that lambda4 is unnecessarily large for the lit region and

sometimes too small for the shadow region. In addition, we find that with a
simple heuristic modification to the UTD, heights as small as lambda20

can be accommodated, with an accuracy that is sufficient for most engineering
applications.

<abstractE>

<annotationB>

<annotationE>

<semhdrgE>

<EOF>

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we constructed CINDI’s three level subject hierarchy for Computer Science and
Electrical Engineering. CINDI’s computer science subject hierarchy was based on ACM and CINDI’s
electrical engineering subject hierarchy was based on INSPEC. LCSH was used to augment both
subject hierarchies. We also derived control terms from CINDI’s subject headings. These control
terms were associated with their subjects in CINDI’s thesaurus. In addition, we presented a method
of generating a Semantic Header, called ASHG. This scheme automatically extracts and generates

an index or meta-information.

ASHG exploits the file naming conventions and the data within a document to determine the
document’s file type. ASHG exploits the semantics of the document’s types in extracting the meta-
information. It also applies automatic abstracting proposed by Luhn in generating document’s
abstract. It also assigns weights for terms depending on their location in the document. Both term
weight and occurrence frequency were used in assigning terms for a document. These extracted

terms were used to classify a document using the association between CINDI'’s controlled term and

their subject headings in the thesaurus.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Finally, we applied ASHG to a collection of test documents and compared the results to the
actual assignments made by INSPEC. We also consulted the papers’ authors on ASHG’s subject
classification results. The results showed hundred percent accuracy in extracting the explicitly stated

fields such as the title, abstract, author and keywords. They also showed some level of accuracy in

generating the abstract.

Since our controlled terms were composed of terms found in CINDI’s subject headings, ASHG’s
results showed a low degree of accuracy in classifying a document. The main reason was that some
of the extracted terms were misleading. For example, the term wire should not be extracted unless
it is followed by another term such as wire grid. The classification scheme used by ASHG showed
some ineffectiveness, because it was based on term frequency and location information. For example,

term-based retrieval cannot handle the following properties:
1. Different words may be used to convey the same meaning.
2. The same words may be used but they can have different meanings.
3. Different people may have different perspectives on the same single concept.
4. The same words may have different meanings in different domains.

Another weakness with ASHG is that it has not considered the issue of synonymity between words

or between the subject headings.

In conclusion, we believe that resolving word senses and determining the relationships that those
words have to one another will have the greatest impact on refining the ASHG’s subject classification

scheme. Therefore, the semantic level language processing should be handled by ASHG in the future.

7.2 Contribution of this Thesis

The contributions made by this thesis to the CINDI project are listed below:

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e An automatic subject hierarchy database builder was designed and built. The input to this
builder is a subject headings of multiple levels. It produces a hierarchy of three levels. In
addition, the subject hierarchy for both Computer science and Electrical engineering were

constructed and derived from previously existing hierarchies such as ACM and INSPEC.

e A controlled term subject heading association was engineered. The thesis used an existing spell
program and built on it a stemming process that was used in relating the subject headings

with their corresponding control terms.

e An automatic semantic header generator was designed and implemented. It extracted both
implicit and explicit meta-information from the primary resource and it classifies it under a

subject hierarchy. It handled HTML, Latex and Text documents.

7.3 Future Work

Some of the system’s refinements should include:

e Terms, which are not significant alone, but are significant if they appear adjacent to another
term should be extracted as significant terms. ASHG’s keyword extraction process should

handle more than single controlled terms. Future work should explore the effect of extracting

noun phrases and compound controlled terms.

e Word senses and determining the relationships that those words have to each other should be

resolved. The semantic level language processing should be handled by ASHG.

e The controlled terms and their synonyms should belong to the same control term and they

should be associated with the same subject headings.

e The domain of the stop-word list should be explored, and more significant terms should be

associated with the subject headings.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



¢ Build more subject hierarchies such as Civil Engineering, Mechanical Engineering... Extend

the type of documents that ASHG can extract meta-information from, such as RTF, SGML...

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A

Papers Used in Testing ASHG

The following is the list of papers used in testing ASHG:

D1 Desai B. C., and Shinghal R., Resource Discovery: Modelling, Cataloguing and Searching,
Department of Computer Science, Concordia University, Montreal, Canada.

D2 Desai B. C., and Shinghal R., and Radhakrishnan T., An Ezpert System to Aid Cataloging
and Searching Electronic Documents on the World Wide Web, Department of Computer Science,
Concordia University, Montreal, Canada.

D3 Desai B. C., and Shinghal R., Modeling Ezpert Search of Virtual/Digital Libraries, Depart-
ment of Computer Science, Concordia University, Montreal, Canada.

D4 Grogono P., Designing for Change, Department of Computer Science, Concordia University,
Montreal, Canada.

D5 Grogono P., Designing a class library, Department of Computer Science, Concordia Univer-
sity, Montreal, Canada.

D6 Grogono P., Design for a Tezt Editor, Department of Computer Science, Concordia Univer-
sity, Montreal, Canada.

D7 Grogono P., A Code Generator for Dee, Department of Computer Science, Concordia Uni-
versity, Montreal, Canada.

D8 Grogono P., The Dee Report, Department of Computer Science, Concordia University, Mon-
treal, Canada.

D9 Butler G., Grogono P., Shinghal R., and Tjandra I., Retrieving Information from Data Flow
Diagrams, Department of Computer Science, Concordia University, Montreal, Canada.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D10 Grogono P. and Santas P., FEquality in Object Oriented Languages, Department of Com-
puter Science, Concordia University, Montreal, Canada and Institute of Scientific Computation,
ETH Zurich, Switzerland.

D11 Grogono P. and Gargul M., A Computational Model for Object Oriented Programming,
Department of Computer Science, Concordia University, Montreal, Canada.

D12 Grogono P. and Gargul M., A Graph Model for Object Oriented Programming, Department
of Computer Science, Concordia University, Montreal, Canada.

D13 Grogono P. and Gargul M., Graph Semantics for Object Oriented Programming, Depart-
ment of Computer Science, Concordia University, Montreal, Canada.

D14 Grogono P., Taivalsaari A. and Tennenhouse K., Proposals for Eztending the Modelling
Facilities of Object Oriented Languages, Department of Computer Science, Concordia University,
Montreal, Canada.

D15 Grogono P., Issues in the Design of an Object Oriented Programming Language, Depart-
ment of Computer Science, Concordia University, Montreal, Canada.

D16 Grogono P., A Model for Computing with Objects, Department of Computer Science, Con-
cordia University, Montreal, Canada.

D17 Bouabdalla A., Heydemann M. C., Opatrny J. and Sotteau D., Embedding Complete Binary
Trees into Star Networks, LIVE institute, Univ. d’Evry-Val-d’Essonne, France, Paris-Sud university,
France, and Dept of Computer Sciences, Concordia University, Montreal, Canada.

D18 Paknys R. and Raschkowan L. R., Moment Method Surface Paich and Wire Grid Accuracy
in the Computation of Near Fields, Department of Electrical and Computer Engineering, Concordia
University, Montreal, Canada.

D19 Paknys R., On the Accuracy of the UTD for the Scatiering by a Cylinder, Department of
Electrical and Computer Engineering, Concordia University, Montreal, Canada.

D20 Davis D., Paknys R., and Kubina S. J., The Basic Scattering Code Viewer A GUI for
the NEC Basic Scattering Code, Department of Electrical and Computer Engineering, Concordia
University, Montreal, Canada.

D21 Grogono P. and Cheung B., A Semantic Browser for Object Oriented Program Develop-
ment, Department of Computer Science, Concordia University, Montreal, Canada.

D22 OQunis ., Pasca M., An Eztended Inverted File Approach for Information Retrieval, Greno-
ble, France.

D23 Kienle H. M. and Fortier P. J., Ezception-Handling Eztension for an Object-oriented DBMS,
University of Stuttgart, Germany and University of Massachusetts Dartmouth, USA.

D24 Nascimento M. A. and Dunham M. H., A Proposal for Indezing Bitemporal Databases Via
Cooperative B+ trees, Southern Methodist University, Dallas, USA.

D25 Ludwig A., Becker P. and Guntzer U., Interfacing Online Bibliographic Databases with
Z39.50, University of Tubingen, Germany. ’

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D26 Park C. and Park S., Alternative Correctness Criteria for Multiversion Concurrency Con-
trol and a Locking Protocol via Freezing, Sogang University, Seoul, Korea.

D27 Woo S., Kim M. H. and Lee Y. J., Accommodating Logical Logging under Fuzzy Check-
pointing in Main Memory Databases, Department of Computer Science Korea Advanced Institute
of Science and Technology, Taejon, Korea.

D28 Cho E. S., Han S. Y., Kim H. J. and Thor M. Y., A New Data Abstraction Layer Required
For OODBMS, Department of Computer Science and Computer Engineering, Seoul National Uni-
versity, Seoul, Korea.

D29 Ehikioya S. A., A Formal Specification Sirategy for Electronic Commerce, Department of
Computer Science University of Manitoba, Winnipeg, Manitoba, Canada.

D30 Tikekar R. V., A Generalized Storage Model for Tertiary Storage Based Systems, Karmanos
Cancer Institute, Wayne State University, Detroit, USA.

D31 Kamp V. and Wietek F., Database System Support for Multidimensional Data Analysis in
Environmental Epidemiology, University of Oldenburg, Germany.

D32 Revesz P. Z. and Li Y., MLPQ: A Linear Constraint Database System with Aggregate Op-
erators, Dept. of Computer Science and Engineering, Lincoln, USA.

D33 Khorasani K., Adaptive Control of Nonlinear Systems Using Output Feedback, Department
of Electrical and Computer Engineering, Concordia University, Montreal, Canada.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

Oracle ConText’s General System

Description

The Oracle7 ConText option is a fully integrated text management solution that enables users to
process text-based information as quickly and easily as relational data. Oracle context analyses the

contents and understands the structure of the English text it reads.

B.1 ConText’s General System Description

Context’s syntax parser processes each sentence in a document individually. It generates an attribute

set representing the syntactic, grammatic, and thematic makeup of the sentences.

Document analysis may continue to the concept Processing Engine. The engine assigns a specific
connotative sense to each main theme word. It determines which are the best interpretations of
a word based on the concordance of connotations in its generalised structure. The connotation
structure is referenced by each word, with each structure containing all possible connotations for

the word [41].
97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.1.1 ConText’s main procedures
1. Sentence Level Processing

(a) Preparsing Stage

e Morphological Analysis: Sentence parsing begins when the sentence recogniser ex-
tracts and individual sentence from a document and tracks the location of the sentence
and each word in the sentence. A language specific routine extracts the base form
of each word using suffixes and other clues. This represents the full language lexicon
with the smallest number of entries.

¢ Grouping words into Syntactic units: Parsing continues by connecting adjacent
proper nouns and by checking for any special phrases that transform a group of
words into a single syntactic unit.

e Parsing order for rule sets: The rule set order is based on a weighting mechanism
that looks for the least ambiguous words to be parsed first.

(b) Parsing

o Parsing Theory and practice: The parser contains both an abstract rule set and a
word and phrase specific rule set. The rule sets employed during parsing are mainly
function based or English normalising.

e Lexical Bindings: The word and phrase specific rule set of the parser resides in the
lexicon, which is made up of hundreds of possible lexical bindings for each word in
the source language.

e Major Clause Types: The parser contains Subject Verb, or SV, SVO?!, SVC?, SVAS,

SVOO0*, SVOC®, and SVOAS.

1SVO stands for Subject Verb Object

2SVC stands for Subject Verb Clause

3SVA stands for Subject Verb Adjective
4SVOO stands for Subject Verb Object Object
5SVOC stands for Subject Verb Object Clause
8SVO stands for Subject Verb Object Adjective

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e Syntactic Descriptions: A Syntactic Description serves as a viewing or storage mech-

anism. After parsing, the Phrase Structure Grammar analysis is stored.
(¢) Rule-Based Parsing

e Normalisation Routine: Normalisation includes expanding or contracting the scope
of the possible parts of speech. It also includes several transformation routines that
alter the order of words in the sentence.

e Main Syntax Parsing Routines: These routines attempt to prove the correctness of a
sentence. The backtracking routines will then analyse the collected information.

e Data Processed

e Syntax Parsing Rules

o Phrase Formation

e Logic Change rules

o Normalisation Rules
2. Concept Processing

(a) Content Analysis

(b) Content Reduction system: Applies two processes. The first process reduces the sentence
by removing the least important information. The second process reduces the sentence
by extracting the most important information.

(c¢) Discourse Tracking

e Theme Calculations: The first calculation accumulates the themes through the doc-
ument on an equal basis. The second calculation finds the pertinence of the thematic
information in the discourse. The third calculation type creates an isolated topic list
by sentence.

e Theme Types: The theme blocks are document, chapter, section, area, paragraph

and sentence.

.99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(d) Connotation Structure

B.1.2 ConText’s Support for many languages and formats

Oracle ConText Option is immediately useful to Oracle customers worldwide, because it supports
searches of text in many languages, including English, Dutch, German, French, Italian, Spanish and
Japanese. It also supports searches of text in most popular formats such as ASCII, HTML, MS

Word, and WordPerfect even documents stored outside the database.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] Alvarado S., et al, Argument comprehension and retrieval for editorial text, Knowledge Based

Systems 3 (3), pp. 139-162, 1990.

[2] Andrews K., The development of a fast conflation algorithm for English, Dissertation submit-
ted for the Diploma in Computer Science, University of Cambridge, 1971.

[3] Automatic indezing and classification of the WAIS databases:
http://www.ub2.lu.se/autoclass.html.

[4] Baxendale P. B., Man made Indez for Technical Literature - An Ezperiment, IBM Journal of
Research and Development, 2:4, pp. 354-361, 1958.

[5] Belkin N., Croft W. B., Retrieval techniques, Annual review of information science and tech-

nology (ARIST), 22, pp. 109-145, 1987.

[6] Blair D. C. , Language representation in Information Retrieval, Elsevier Science publishers,

New York, 1990.

[7] Brandow R. , Mitze K., Rau L. F., Automatic condensation of elecironic publications by sen-

tence selection, Information Processing and management, Vol. 31, No. 5., pp. 675-685, 1995.

[8] Chiaramella Y. et al., JOTA: a full text information retrieval system, In proceedings of the

ACM conference on research and Development in information retrieval, edited F. Rabitti, Pisa,

pp. 207-213, 1987.

[9] De Bra, P., Houben, G-J., & Kornatzky, Y., Searck in the World-Wide Web,
http://www.win.tue.nl/help/doc/demo.ps

[10] Desai, B. C., An Introduction to Database Sysiems, West, St. Paul, MN 1990.

[11] Desai B. C., Cover page aka Semantic Header,

http://www.cs.concordia.ca/faculty /bcdesai/semantic-header.html, July 1994, revised ver-

sion, August 1994.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.ub2.lu.se/autoclass.html
http://www
http://www.cs.concordia.ca/faculty/bcdesai/semantic-header.html

[12] Desai B. C., The Semantic Header Indezing and Searching on the internet, Department of
Computer Science, Concordia University. Montreal, Canada, February 1995.

http://www.cs.concordia.ca/ faculty /bcdesai/cindi-system-1.1.html

[13] DuRoss Liddy E., Anapkora in natural language processing and information reirieval, Infor-

mation Processing and Management, Vol. 26, No. 1, pp. 39-52, 1990.

[14] Earl L. L., Ezperiments in Automatic Extracting and Indezing, Information Storage and Re-

trieval, 6:4, pp. 313-334, October 1970.

{15] Edmundson H. P., Problems in Automatic Abstracting, Communications of the ACM, 7:4, pp.
259-263, April 1964.

[16] Edmundson H. P. and Wyllys R. E., Automatic Abstracting and Indezing Survey and Recom-
mendations, Communications of ACM, 4:5, pp. 226-234, May 1961.

[17] Edmundson H. P., New methods in Automatic Extracting, University of Maryland, college park,
Maryland, Journal of the Association for computing machinery, Vol. 16, No. 2, pp. 264-285,
April 1969.

[18] Evans D. A. , Concept management in iext via natural language processing: the CLARIT
approach, In working notes for the AAAI spring symposium on Text-based intelligent systems.

Stanford 1990.
[19] Fung R. and Del Favero B. , Applying Bayesian Networks to Information Retrieval, Commu-

nications of the ACM, Vol 38, No. 3, pp. 42-57, March 1995.

[20] Fletcher, J. 1993., Jumpstation,
http://www.stir.ac.uk/jsbin/js

[21] Graham 1., Introduction To HTML and URLs:
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML /intro.html, Last Update: 24 Jan-

uary 1997.

[22] Hardy D. R., Shwartz M. F., Customized Information Eztraction as a Basis for Resource
Discovery, Department of Computer Science, University of Colorado. March 1994; Revised

February 1995.

[23] Jacobs, P.S. and Rau, L.F., SCISOR: extracting information from online news, Communica-

tions of the ACM, Vol. 33, No. 11, 1990.

[24] Jacqueline W. T. Wong, W. K. Kan, Gilbert Young, ACTION: Automatic Classification for
full-tezt documents, ACM Transactions on information systems, pp. 26-41, 1997.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.cs.concordia.ca/
http://www.stir.ac.uk/jsbin/js
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/intro.html

[25] Jing Y. and Croft B. W., An Association Thesaurus for Information Retrieval, Department
of Computer Science, University of Massachusetts at Amherst, Amherst, MA 01003.

[26] Johnson F. C., Paice C. D., Black W.J, Neal A. P., The application of linguistic processing to

aulomatic abstract generation, Journal of Documentation and Text management, 1993.
[27] Katz, W. A., Introduction to Reference Work, Vol. 1-2 McGraw-Hill, New York, NY.

(28] Koster, M., ALIWEB(Archie Like Indezing the WEB),
http://web.nexor.co.uk/aliweb/doc/aliweb.html

[29] Krovetz R., Croft W. B.. Lezical ambiguily and information retrieval, ACM Transactions on
information systems, Vol. 10, No. 2, pp. 115-141, April 1992.

[30] Kupiec, J. , Pederson, J., and Chen F., A trainable document summarizer, In preceedings of

the 18th ACMSGIR Conference, 1995.

(31] Lamport L., LATEX: A Document Preparation System, Addison_Wesley, Reading, Mas-
sachusetts, second edition, 1994, ISBN 0-201-52983-1.

[32] Lebowitz M., The use of memory in text processing, Communications of the ACM, Vol. 33,
No. 8, pp. 30-49, 1990.

[33] Lehnert, W. G. and Sundheim, B. 1991. A Performance Evaluation of Text Analysis Tech-
nologies, Al Magazine 12(3):81-94.

[34] Lewis D. D. , Jones K. , Natural Language processing for information Retrieval, Communica-

tions of the ACM, Vol 39, pp. 92-101, January 1996.

[35] Lovins J. B., Development of a Stemming Algorithm, Mechanical Translation and Computa-
tional Linguistics, Vol 11, January 1968.

[36] Luhn, H. P., The automatic crealion of literature abstracts, IBM Journal of Research and
Development, 2, pp. 159-165, 1958.

[37] Maron, M. E. and Kuhns, J. L., On relevance, probabilistic indezing and information reirieval,

Journal of the ACM, 7, pp. 216-244, 1960.

[38] Mauldin M. 1991. Retrieval Performance in FERRET: A conceptual Information Retrieval
System, In Proceedings, SGIR 1991. pp. 347-355.

[39] McBryan, Oliver A., World Wide Web Worm,
http://www.cs.colorado.edu/home/mcbryan/ WWWW html

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://web.nexor.co.uk/aliweb/doc/aliweb.html
http://www.cs.colorado.edu/home/mcbryan/WWWW.html

[40] O’Brien T., Oracle ConText, Text looms as the nezt frontier in Information Management,

prepared by Oracle Corporation, April 1996.

[41] Oracle Corporation, ConTezt: Introduction to Oracle ConTezt, Oracle Corporation, Sept.
1993.

[42] Paice C. D., Automatic Generation of Literature Abstracts - An Approach Based on the identifi-
cation of self indicaling phrases, in information retrieval research, R.N. Oddy, S.E. Robertson,

C.J. van Rijsbergen and P.W. Williams, editors, Butterworths, London, pp. 172-191, 1981.

[43] Paice C. D., Constructing Literature Abstracts by Computer: Techniques and Prospects, Infor-
mation Processing and Management, 26:1, pp. 171-186, 1990.

(44] Porter, M. F., An Algorithm For Suffiz Stripping, Program 14 (3), pp. 130-137, July 1980.

f45] Rau, L. F., Jacobs, P. S. and Zernik, U., Information ertraction and tezrt summarization using
lingustic knowledge acquisition, Information processing and management, Vol. 25, No. 4, pp.

419-428, 1989.
[46] Rijsbergen C. J. van, Information Retrieval, second edition, Butterworths, pp. 17-22, 1979.

[47] Riloff E. and Hollar L., Text Database and Information Retrievael, ACM computing surveys,
Vol. 28, No. 1, pp. 133-135, March 1996.

(48] Riloff E. and Lehnert W., Information Extraction as a basis for High-Precision Tezt Classifi-
catton, ACM Transactions on Information Systems, Vol. 12, No. 3, pp. 296-333, July 1994.

(49] Rush J. E., Salvador R., and Zamora A., Automatic Abstracting and Indering-Production of
Indicative Abstracts By Application of Contertual Inference and Syntactic Coherence Criteria,
Journal of the ASIS, 22:4,pp. 260-274, July-August 1964.

{50] Salton G. and Lesk M. E., Computer Evaluation of Indezing and text processing, Journal of
ACM, Vol 25, No. 1, pp. 8-36, 1968.

[51] Saltorn G., The SMART Retrieval System, Prentice-Hall Inc.,4-6, 1971.

[62] Salton G., McGILL M. J., Introduction to Modern Information Retrieval, McGraw-Hill Book
Company, pp. 87-89, 1983.

[53] Salton G., Automatic Text Processing: The Transformation, Analysis, and Retrieval of infor-
mation by Computer, Addison-Welsey, Reading, MA., 1989.

[64] Salton G., Allen J. , Buckley O. , Automatic Structuring and Retrieval of Large Tezt Files,

Department of Computer Science, Cornell University. 1992.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[55] Salton G., Allan J. , Buckley C., and Singhal A. , Automatic Analysis, Theme Generation,
and Summarization of Machine-Readable Tezts, Science, Vol264, pp. 1421-1426, June 1994.

(56) Shayan N., CINDI: Concordia INdexing and DIscovery system, Department of Computer Sci-

ence, Concordia University, Montreal, Canada, 1997.

[57] Smeaton A. F., Progress in the Application of Natural Language Processing to Information
Retrieval tasks, The Computer Journal, Vol. 35, No. 3, pp. 268-271, 1992.

(58] Stiles, H. F., The association factor in information retrieval, Journal of the ACM, 8, pp.
271-279, 1961.

[59] Teufel S. and Moens M., Sentence exiraction as a classification task, ACL/EACL97, Intelligent
Scalable Text Summarization, Workshop Program, JULY 11, 1997.

[60] Thau, R., SiteInder Transducer,
http://www.ai.mit.edu/tools/site-index.html

[61] Turtle H. R. and Croft, W. B., Efficient Probabilistic Inference for Tezt Retrieval, In Proceed-
ings of RIAO 91. pp. 644-661, 1991.

[62] Computer and Control Abstracts, Produced by INSPEC, No. 10, October 1997.
(63] http://www.oracle.com.sg/products/oracle7/oracle7.3/html/conTxtDS.html.
[64] http://www.oracle.com.sg/products/oracle7/oracle7.3/html/context seybold.html.

[65] Ezperimental Search Engine Meta-Indez,
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Demo/metaindex.html

[66] Library of Congress Subject Headings, September 1996.
[67] http://www.acm.org/class/1998/ccs98.txt.

{68] Search WWW document full text,

http://rbse.jsc.nasa.gov/eichmann/urlsearch.html

(69] WebCrawler,
http://www.biotech.washington.edu/WebCrawler/WebQuery.html

{70] World Wide Web Catalog,
http://cuiwww.unige.ch/cgi-bin/w3catalog

[71] http://web.soi.city.ac.uk/research/cisr/okapi/stem.html

[72] http://www.qpat.com/info/help/stemhelp.html

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.ai.mit
http://www.oracle.com.sg/products/oracle7/oracle7.3/html/conTxtDS.html
http://www.oracle.com.sg/products/oracle7/oracle7.3/html/context-seybold.html
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Demo/metaindex.html
http://www.acm.org/class/1998/ccs98.txt
http://rbse.jsc.nasa.gov/eichmann/urlsearch.html
http://www.biotech.washington.edu/WebCrawler/WebQuery.html
http://cuiwww.unige.ch/cgi-bin/w3catalog
http://web.soi.city.ac.uk/research/cisr/okapi/stem.html
http://www

